sklearn.metrics.PrecisionRecallDisplay

class sklearn.metrics.PrecisionRecallDisplay(precision, recall, *, average_precision=None, estimator_name=None, pos_label=None)[source]

Precision Recall visualization.

It is recommend to use from_estimator or from_predictions to create a PredictionRecallDisplay. All parameters are stored as attributes.

Read more in the User Guide.

Parameters
precisionndarray

Precision values.

recallndarray

Recall values.

average_precisionfloat, default=None

Average precision. If None, the average precision is not shown.

estimator_namestr, default=None

Name of estimator. If None, then the estimator name is not shown.

pos_labelstr or int, default=None

The class considered as the positive class. If None, the class will not be shown in the legend.

New in version 0.24.

Attributes
line_matplotlib Artist

Precision recall curve.

ax_matplotlib Axes

Axes with precision recall curve.

figure_matplotlib Figure

Figure containing the curve.

See also

precision_recall_curve

Compute precision-recall pairs for different probability thresholds.

PrecisionRecallDisplay.from_estimator

Plot Precision Recall Curve given a binary classifier.

PrecisionRecallDisplay.from_predictions

Plot Precision Recall Curve using predictions from a binary classifier.

Examples

>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import (precision_recall_curve,
...                              PrecisionRecallDisplay)
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
...                                                     random_state=0)
>>> clf = SVC(random_state=0)
>>> clf.fit(X_train, y_train)
SVC(random_state=0)
>>> predictions = clf.predict(X_test)
>>> precision, recall, _ = precision_recall_curve(y_test, predictions)
>>> disp = PrecisionRecallDisplay(precision=precision, recall=recall)
>>> disp.plot()
<...>
>>> plt.show()
../../_images/sklearn-metrics-PrecisionRecallDisplay-1.png

Methods

from_estimator(estimator, X, y, *[, …])

Plot precision-recall curve given an estimator and some data.

from_predictions(y_true, y_pred, *[, …])

Plot precision-recall curve given binary class predictions.

plot([ax, name])

Plot visualization.

classmethod from_estimator(estimator, X, y, *, sample_weight=None, pos_label=None, response_method='auto', name=None, ax=None, **kwargs)[source]

Plot precision-recall curve given an estimator and some data.

Parameters
estimatorestimator instance

Fitted classifier or a fitted Pipeline in which the last estimator is a classifier.

X{array-like, sparse matrix} of shape (n_samples, n_features)

Input values.

yarray-like of shape (n_samples,)

Target values.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

pos_labelstr or int, default=None

The class considered as the positive class when computing the precision and recall metrics. By default, estimators.classes_[1] is considered as the positive class.

response_method{‘predict_proba’, ‘decision_function’, ‘auto’}, default=’auto’

Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next.

namestr, default=None

Name for labeling curve. If None, no name is used.

axmatplotlib axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

**kwargsdict

Keyword arguments to be passed to matplotlib’s plot.

Returns
displayPrecisionRecallDisplay

See also

PrecisionRecallDisplay.from_predictions

Plot precision-recall curve using estimated probabilities or output of decision function.

Examples

>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import PrecisionRecallDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...         X, y, random_state=0)
>>> clf = LogisticRegression()
>>> clf.fit(X_train, y_train)
LogisticRegression()
>>> PrecisionRecallDisplay.from_estimator(
...    clf, X_test, y_test)
<...>
>>> plt.show()
../../_images/sklearn-metrics-PrecisionRecallDisplay-2.png
classmethod from_predictions(y_true, y_pred, *, sample_weight=None, pos_label=None, name=None, ax=None, **kwargs)[source]

Plot precision-recall curve given binary class predictions.

Parameters
y_truearray-like of shape (n_samples,)

True binary labels.

y_predarray-like of shape (n_samples,)

Estimated probabilities or output of decision function.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

pos_labelstr or int, default=None

The class considered as the positive class when computing the precision and recall metrics.

namestr, default=None

Name for labeling curve. If None, name will be set to "Classifier".

axmatplotlib axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

**kwargsdict

Keyword arguments to be passed to matplotlib’s plot.

Returns
displayPrecisionRecallDisplay

See also

PrecisionRecallDisplay.from_estimator

Plot precision-recall curve using an estimator.

Examples

>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import PrecisionRecallDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...         X, y, random_state=0)
>>> clf = LogisticRegression()
>>> clf.fit(X_train, y_train)
LogisticRegression()
>>> y_pred = clf.predict_proba(X_test)[:, 1]
>>> PrecisionRecallDisplay.from_predictions(
...    y_test, y_pred)
<...>
>>> plt.show()
../../_images/sklearn-metrics-PrecisionRecallDisplay-3.png
plot(ax=None, *, name=None, **kwargs)[source]

Plot visualization.

Extra keyword arguments will be passed to matplotlib’s plot.

Parameters
axMatplotlib Axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

namestr, default=None

Name of precision recall curve for labeling. If None, use estimator_name if not None, otherwise no labeling is shown.

**kwargsdict

Keyword arguments to be passed to matplotlib’s plot.

Returns
displayPrecisionRecallDisplay

Object that stores computed values.

Examples using sklearn.metrics.PrecisionRecallDisplay