sklearn.calibration.CalibrationDisplay

class sklearn.calibration.CalibrationDisplay(prob_true, prob_pred, y_prob, *, estimator_name=None)[source]

Calibration curve (also known as reliability diagram) visualization.

It is recommended to use from_estimator or from_predictions to create a CalibrationDisplay. All parameters are stored as attributes.

Read more about calibration in the User Guide and more about the scikit-learn visualization API in Visualizations.

New in version 1.0.

Parameters
prob_truendarray of shape (n_bins,)

The proportion of samples whose class is the positive class (fraction of positives), in each bin.

prob_predndarray of shape (n_bins,)

The mean predicted probability in each bin.

y_probndarray of shape (n_samples,)

Probability estimates for the positive class, for each sample.

estimator_namestr, default=None

Name of estimator. If None, the estimator name is not shown.

Attributes
line_matplotlib Artist

Calibration curve.

ax_matplotlib Axes

Axes with calibration curve.

figure_matplotlib Figure

Figure containing the curve.

See also

calibration_curve

Compute true and predicted probabilities for a calibration curve.

CalibrationDisplay.from_predictions

Plot calibration curve using true and predicted labels.

CalibrationDisplay.from_estimator

Plot calibration curve using an estimator and data.

Examples

>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import calibration_curve, CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...     X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> y_prob = clf.predict_proba(X_test)[:, 1]
>>> prob_true, prob_pred = calibration_curve(y_test, y_prob, n_bins=10)
>>> disp = CalibrationDisplay(prob_true, prob_pred, y_prob)
>>> disp.plot()
<...>

Methods

from_estimator(estimator, X, y, *[, n_bins, …])

Plot calibration curve using an binary classifier and data.

from_predictions(y_true, y_prob, *[, …])

Plot calibration curve using true labels and predicted probabilities.

plot(*[, ax, name, ref_line])

Plot visualization.

classmethod from_estimator(estimator, X, y, *, n_bins=5, strategy='uniform', name=None, ref_line=True, ax=None, **kwargs)[source]

Plot calibration curve using an binary classifier and data.

Calibration curve, also known as reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis.

Extra keyword arguments will be passed to matplotlib.pyplot.plot.

Read more about calibration in the User Guide and more about the scikit-learn visualization API in Visualizations.

New in version 1.0.

Parameters
estimatorestimator instance

Fitted classifier or a fitted Pipeline in which the last estimator is a classifier. The classifier must have a predict_proba method.

X{array-like, sparse matrix} of shape (n_samples, n_features)

Input values.

yarray-like of shape (n_samples,)

Binary target values.

n_binsint, default=5

Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data.

strategy{‘uniform’, ‘quantile’}, default=’uniform’

Strategy used to define the widths of the bins.

  • 'uniform': The bins have identical widths.

  • 'quantile': The bins have the same number of samples and depend on predicted probabilities.

namestr, default=None

Name for labeling curve. If None, the name of the estimator is used.

ref_linebool, default=True

If True, plots a reference line representing a perfectly calibrated classifier.

axmatplotlib axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

**kwargsdict

Keyword arguments to be passed to matplotlib.pyplot.plot.

Returns
displayCalibrationDisplay.

Object that stores computed values.

See also

CalibrationDisplay.from_predictions

Plot calibration curve using true and predicted labels.

Examples

>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...     X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test)
>>> plt.show()
../../_images/sklearn-calibration-CalibrationDisplay-1.png
classmethod from_predictions(y_true, y_prob, *, n_bins=5, strategy='uniform', name=None, ref_line=True, ax=None, **kwargs)[source]

Plot calibration curve using true labels and predicted probabilities.

Calibration curve, also known as reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis.

Extra keyword arguments will be passed to matplotlib.pyplot.plot.

Read more about calibration in the User Guide and more about the scikit-learn visualization API in Visualizations.

New in version 1.0.

Parameters
y_truearray-like of shape (n_samples,)

True labels.

y_probarray-like of shape (n_samples,)

The predicted probabilities of the positive class.

n_binsint, default=5

Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data.

strategy{‘uniform’, ‘quantile’}, default=’uniform’

Strategy used to define the widths of the bins.

  • 'uniform': The bins have identical widths.

  • 'quantile': The bins have the same number of samples and depend on predicted probabilities.

namestr, default=None

Name for labeling curve.

ref_linebool, default=True

If True, plots a reference line representing a perfectly calibrated classifier.

axmatplotlib axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

**kwargsdict

Keyword arguments to be passed to matplotlib.pyplot.plot.

Returns
displayCalibrationDisplay.

Object that stores computed values.

See also

CalibrationDisplay.from_estimator

Plot calibration curve using an estimator and data.

Examples

>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...     X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> y_prob = clf.predict_proba(X_test)[:, 1]
>>> disp = CalibrationDisplay.from_predictions(y_test, y_prob)
>>> plt.show()
../../_images/sklearn-calibration-CalibrationDisplay-2.png
plot(*, ax=None, name=None, ref_line=True, **kwargs)[source]

Plot visualization.

Extra keyword arguments will be passed to matplotlib.pyplot.plot.

Parameters
axMatplotlib Axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

namestr, default=None

Name for labeling curve. If None, use estimator_name if not None, otherwise no labeling is shown.

ref_linebool, default=True

If True, plots a reference line representing a perfectly calibrated classifier.

**kwargsdict

Keyword arguments to be passed to matplotlib.pyplot.plot.

Returns
displayCalibrationDisplay

Object that stores computed values.