Note

Click here to download the full example code or to run this example in your browser via Binder

# Selecting dimensionality reduction with Pipeline and GridSearchCV¶

This example constructs a pipeline that does dimensionality
reduction followed by prediction with a support vector
classifier. It demonstrates the use of `GridSearchCV`

and
`Pipeline`

to optimize over different classes of estimators in a
single CV run – unsupervised `PCA`

and `NMF`

dimensionality
reductions are compared to univariate feature selection during
the grid search.

Additionally, `Pipeline`

can be instantiated with the `memory`

argument to memoize the transformers within the pipeline, avoiding to fit
again the same transformers over and over.

Note that the use of `memory`

to enable caching becomes interesting when the
fitting of a transformer is costly.

## Illustration of `Pipeline`

and `GridSearchCV`

¶

```
# Authors: Robert McGibbon, Joel Nothman, Guillaume Lemaitre
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA, NMF
from sklearn.feature_selection import SelectKBest, chi2
print(__doc__)
pipe = Pipeline([
# the reduce_dim stage is populated by the param_grid
('reduce_dim', 'passthrough'),
('classify', LinearSVC(dual=False, max_iter=10000))
])
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]
reducer_labels = ['PCA', 'NMF', 'KBest(chi2)']
grid = GridSearchCV(pipe, n_jobs=1, param_grid=param_grid)
X, y = load_digits(return_X_y=True)
grid.fit(X, y)
mean_scores = np.array(grid.cv_results_['mean_test_score'])
# scores are in the order of param_grid iteration, which is alphabetical
mean_scores = mean_scores.reshape(len(C_OPTIONS), -1, len(N_FEATURES_OPTIONS))
# select score for best C
mean_scores = mean_scores.max(axis=0)
bar_offsets = (np.arange(len(N_FEATURES_OPTIONS)) *
(len(reducer_labels) + 1) + .5)
plt.figure()
COLORS = 'bgrcmyk'
for i, (label, reducer_scores) in enumerate(zip(reducer_labels, mean_scores)):
plt.bar(bar_offsets + i, reducer_scores, label=label, color=COLORS[i])
plt.title("Comparing feature reduction techniques")
plt.xlabel('Reduced number of features')
plt.xticks(bar_offsets + len(reducer_labels) / 2, N_FEATURES_OPTIONS)
plt.ylabel('Digit classification accuracy')
plt.ylim((0, 1))
plt.legend(loc='upper left')
plt.show()
```

Out:

```
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
/home/circleci/project/sklearn/decomposition/_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
```

## Caching transformers within a `Pipeline`

¶

It is sometimes worthwhile storing the state of a specific transformer since it could be used again. Using a pipeline in

`GridSearchCV`

triggers such situations. Therefore, we use the argument`memory`

to enable caching.Warning

Note that this example is, however, only an illustration since for this specific case fitting PCA is not necessarily slower than loading the cache. Hence, use the

`memory`

constructor parameter when the fitting of a transformer is costly.

```
from joblib import Memory
from shutil import rmtree
# Create a temporary folder to store the transformers of the pipeline
location = 'cachedir'
memory = Memory(location=location, verbose=10)
cached_pipe = Pipeline([('reduce_dim', PCA()),
('classify', LinearSVC(dual=False, max_iter=10000))],
memory=memory)
# This time, a cached pipeline will be used within the grid search
# Delete the temporary cache before exiting
memory.clear(warn=False)
rmtree(location)
```

The `PCA`

fitting is only computed at the evaluation of the first
configuration of the `C`

parameter of the `LinearSVC`

classifier. The
other configurations of `C`

will trigger the loading of the cached `PCA`

estimator data, leading to save processing time. Therefore, the use of
caching the pipeline using `memory`

is highly beneficial when fitting
a transformer is costly.

**Total running time of the script:** ( 0 minutes 4.434 seconds)