Prediction Latency

This is an example showing the prediction latency of various scikit-learn estimators.

The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode.

The plots represent the distribution of the prediction latency as a boxplot.

# Authors: Eustache Diemert <eustache@diemert.fr>
# License: BSD 3 clause

import gc
import time
from collections import defaultdict

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge, SGDRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.utils import shuffle


def _not_in_sphinx():
    # Hack to detect whether we are running by the sphinx builder
    return "__file__" in globals()

Benchmark and plot helper functions

def atomic_benchmark_estimator(estimator, X_test, verbose=False):
    """Measure runtime prediction of each instance."""
    n_instances = X_test.shape[0]
    runtimes = np.zeros(n_instances, dtype=float)
    for i in range(n_instances):
        instance = X_test[[i], :]
        start = time.time()
        estimator.predict(instance)
        runtimes[i] = time.time() - start
    if verbose:
        print(
            "atomic_benchmark runtimes:",
            min(runtimes),
            np.percentile(runtimes, 50),
            max(runtimes),
        )
    return runtimes


def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose):
    """Measure runtime prediction of the whole input."""
    n_instances = X_test.shape[0]
    runtimes = np.zeros(n_bulk_repeats, dtype=float)
    for i in range(n_bulk_repeats):
        start = time.time()
        estimator.predict(X_test)
        runtimes[i] = time.time() - start
    runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes)))
    if verbose:
        print(
            "bulk_benchmark runtimes:",
            min(runtimes),
            np.percentile(runtimes, 50),
            max(runtimes),
        )
    return runtimes


def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
    """
    Measure runtimes of prediction in both atomic and bulk mode.

    Parameters
    ----------
    estimator : already trained estimator supporting `predict()`
    X_test : test input
    n_bulk_repeats : how many times to repeat when evaluating bulk mode

    Returns
    -------
    atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the
    runtimes in seconds.

    """
    atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
    bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose)
    return atomic_runtimes, bulk_runtimes


def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False):
    """Generate a regression dataset with the given parameters."""
    if verbose:
        print("generating dataset...")

    X, y, coef = make_regression(
        n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True
    )

    random_seed = 13
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, train_size=n_train, test_size=n_test, random_state=random_seed
    )
    X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)

    X_scaler = StandardScaler()
    X_train = X_scaler.fit_transform(X_train)
    X_test = X_scaler.transform(X_test)

    y_scaler = StandardScaler()
    y_train = y_scaler.fit_transform(y_train[:, None])[:, 0]
    y_test = y_scaler.transform(y_test[:, None])[:, 0]

    gc.collect()
    if verbose:
        print("ok")
    return X_train, y_train, X_test, y_test


def boxplot_runtimes(runtimes, pred_type, configuration):
    """
    Plot a new `Figure` with boxplots of prediction runtimes.

    Parameters
    ----------
    runtimes : list of `np.array` of latencies in micro-seconds
    cls_names : list of estimator class names that generated the runtimes
    pred_type : 'bulk' or 'atomic'

    """

    fig, ax1 = plt.subplots(figsize=(10, 6))
    bp = plt.boxplot(
        runtimes,
    )

    cls_infos = [
        "%s\n(%d %s)"
        % (
            estimator_conf["name"],
            estimator_conf["complexity_computer"](estimator_conf["instance"]),
            estimator_conf["complexity_label"],
        )
        for estimator_conf in configuration["estimators"]
    ]
    plt.setp(ax1, xticklabels=cls_infos)
    plt.setp(bp["boxes"], color="black")
    plt.setp(bp["whiskers"], color="black")
    plt.setp(bp["fliers"], color="red", marker="+")

    ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)

    ax1.set_axisbelow(True)
    ax1.set_title(
        "Prediction Time per Instance - %s, %d feats."
        % (pred_type.capitalize(), configuration["n_features"])
    )
    ax1.set_ylabel("Prediction Time (us)")

    plt.show()


def benchmark(configuration):
    """Run the whole benchmark."""
    X_train, y_train, X_test, y_test = generate_dataset(
        configuration["n_train"], configuration["n_test"], configuration["n_features"]
    )

    stats = {}
    for estimator_conf in configuration["estimators"]:
        print("Benchmarking", estimator_conf["instance"])
        estimator_conf["instance"].fit(X_train, y_train)
        gc.collect()
        a, b = benchmark_estimator(estimator_conf["instance"], X_test)
        stats[estimator_conf["name"]] = {"atomic": a, "bulk": b}

    cls_names = [
        estimator_conf["name"] for estimator_conf in configuration["estimators"]
    ]
    runtimes = [1e6 * stats[clf_name]["atomic"] for clf_name in cls_names]
    boxplot_runtimes(runtimes, "atomic", configuration)
    runtimes = [1e6 * stats[clf_name]["bulk"] for clf_name in cls_names]
    boxplot_runtimes(runtimes, "bulk (%d)" % configuration["n_test"], configuration)


def n_feature_influence(estimators, n_train, n_test, n_features, percentile):
    """
    Estimate influence of the number of features on prediction time.

    Parameters
    ----------

    estimators : dict of (name (str), estimator) to benchmark
    n_train : nber of training instances (int)
    n_test : nber of testing instances (int)
    n_features : list of feature-space dimensionality to test (int)
    percentile : percentile at which to measure the speed (int [0-100])

    Returns:
    --------

    percentiles : dict(estimator_name,
                       dict(n_features, percentile_perf_in_us))

    """
    percentiles = defaultdict(defaultdict)
    for n in n_features:
        print("benchmarking with %d features" % n)
        X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
        for cls_name, estimator in estimators.items():
            estimator.fit(X_train, y_train)
            gc.collect()
            runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
            percentiles[cls_name][n] = 1e6 * np.percentile(runtimes, percentile)
    return percentiles


def plot_n_features_influence(percentiles, percentile):
    fig, ax1 = plt.subplots(figsize=(10, 6))
    colors = ["r", "g", "b"]
    for i, cls_name in enumerate(percentiles.keys()):
        x = np.array(sorted(percentiles[cls_name].keys()))
        y = np.array([percentiles[cls_name][n] for n in x])
        plt.plot(
            x,
            y,
            color=colors[i],
        )
    ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)
    ax1.set_axisbelow(True)
    ax1.set_title("Evolution of Prediction Time with #Features")
    ax1.set_xlabel("#Features")
    ax1.set_ylabel("Prediction Time at %d%%-ile (us)" % percentile)
    plt.show()


def benchmark_throughputs(configuration, duration_secs=0.1):
    """benchmark throughput for different estimators."""
    X_train, y_train, X_test, y_test = generate_dataset(
        configuration["n_train"], configuration["n_test"], configuration["n_features"]
    )
    throughputs = dict()
    for estimator_config in configuration["estimators"]:
        estimator_config["instance"].fit(X_train, y_train)
        start_time = time.time()
        n_predictions = 0
        while (time.time() - start_time) < duration_secs:
            estimator_config["instance"].predict(X_test[[0]])
            n_predictions += 1
        throughputs[estimator_config["name"]] = n_predictions / duration_secs
    return throughputs


def plot_benchmark_throughput(throughputs, configuration):
    fig, ax = plt.subplots(figsize=(10, 6))
    colors = ["r", "g", "b"]
    cls_infos = [
        "%s\n(%d %s)"
        % (
            estimator_conf["name"],
            estimator_conf["complexity_computer"](estimator_conf["instance"]),
            estimator_conf["complexity_label"],
        )
        for estimator_conf in configuration["estimators"]
    ]
    cls_values = [
        throughputs[estimator_conf["name"]]
        for estimator_conf in configuration["estimators"]
    ]
    plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors)
    ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs)))
    ax.set_xticklabels(cls_infos, fontsize=10)
    ymax = max(cls_values) * 1.2
    ax.set_ylim((0, ymax))
    ax.set_ylabel("Throughput (predictions/sec)")
    ax.set_title(
        "Prediction Throughput for different estimators (%d features)"
        % configuration["n_features"]
    )
    plt.show()

Benchmark bulk/atomic prediction speed for various regressors

configuration = {
    "n_train": int(1e3),
    "n_test": int(1e2),
    "n_features": int(1e2),
    "estimators": [
        {
            "name": "Linear Model",
            "instance": SGDRegressor(
                penalty="elasticnet", alpha=0.01, l1_ratio=0.25, tol=1e-4
            ),
            "complexity_label": "non-zero coefficients",
            "complexity_computer": lambda clf: np.count_nonzero(clf.coef_),
        },
        {
            "name": "RandomForest",
            "instance": RandomForestRegressor(),
            "complexity_label": "estimators",
            "complexity_computer": lambda clf: clf.n_estimators,
        },
        {
            "name": "SVR",
            "instance": SVR(kernel="rbf"),
            "complexity_label": "support vectors",
            "complexity_computer": lambda clf: len(clf.support_vectors_),
        },
    ],
}
benchmark(configuration)
  • Prediction Time per Instance - Atomic, 100 feats.
  • Prediction Time per Instance - Bulk (100), 100 feats.
Benchmarking SGDRegressor(alpha=0.01, l1_ratio=0.25, penalty='elasticnet', tol=0.0001)
Benchmarking RandomForestRegressor()
Benchmarking SVR()

Benchmark n_features influence on prediction speed

percentile = 90
percentiles = n_feature_influence(
    {"ridge": Ridge()},
    configuration["n_train"],
    configuration["n_test"],
    [100, 250, 500],
    percentile,
)
plot_n_features_influence(percentiles, percentile)
Evolution of Prediction Time with #Features
benchmarking with 100 features
benchmarking with 250 features
benchmarking with 500 features

Benchmark throughput

throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)
Prediction Throughput for different estimators (100 features)

Total running time of the script: (0 minutes 16.832 seconds)

Related examples

SVM-Anova: SVM with univariate feature selection

SVM-Anova: SVM with univariate feature selection

Out-of-core classification of text documents

Out-of-core classification of text documents

Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification

Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification

Model Complexity Influence

Model Complexity Influence

Single estimator versus bagging: bias-variance decomposition

Single estimator versus bagging: bias-variance decomposition

Gallery generated by Sphinx-Gallery