SGD: convex loss functions#

A plot that compares the various convex loss functions supported by SGDClassifier .

plot sgd loss functions
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np


def modified_huber_loss(y_true, y_pred):
    z = y_pred * y_true
    loss = -4 * z
    loss[z >= -1] = (1 - z[z >= -1]) ** 2
    loss[z >= 1.0] = 0
    return loss


xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
lw = 2
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color="gold", lw=lw, label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color="teal", lw=lw, label="Hinge loss")
plt.plot(xx, -np.minimum(xx, 0), color="yellowgreen", lw=lw, label="Perceptron loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), color="cornflowerblue", lw=lw, label="Log loss")
plt.plot(
    xx,
    np.where(xx < 1, 1 - xx, 0) ** 2,
    color="orange",
    lw=lw,
    label="Squared hinge loss",
)
plt.plot(
    xx,
    modified_huber_loss(xx, 1),
    color="darkorchid",
    lw=lw,
    linestyle="--",
    label="Modified Huber loss",
)
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y=1, f(x))$")
plt.show()

Total running time of the script: (0 minutes 0.108 seconds)

Related examples

SGD: Weighted samples

SGD: Weighted samples

Illustration of Gaussian process classification (GPC) on the XOR dataset

Illustration of Gaussian process classification (GPC) on the XOR dataset

SVM Exercise

SVM Exercise

SVM Margins Example

SVM Margins Example

Gallery generated by Sphinx-Gallery