confusion_matrix#

sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None, normalize=None)[source]#

Compute confusion matrix to evaluate the accuracy of a classification.

By definition a confusion matrix C is such that Ci,j is equal to the number of observations known to be in group i and predicted to be in group j.

Thus in binary classification, the count of true negatives is C0,0, false negatives is C1,0, true positives is C1,1 and false positives is C0,1.

Read more in the User Guide.

Parameters:
y_truearray-like of shape (n_samples,)

Ground truth (correct) target values.

y_predarray-like of shape (n_samples,)

Estimated targets as returned by a classifier.

labelsarray-like of shape (n_classes), default=None

List of labels to index the matrix. This may be used to reorder or select a subset of labels. If None is given, those that appear at least once in y_true or y_pred are used in sorted order.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Added in version 0.18.

normalize{‘true’, ‘pred’, ‘all’}, default=None

Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.

Returns:
Cndarray of shape (n_classes, n_classes)

Confusion matrix whose i-th row and j-th column entry indicates the number of samples with true label being i-th class and predicted label being j-th class.

See also

ConfusionMatrixDisplay.from_estimator

Plot the confusion matrix given an estimator, the data, and the label.

ConfusionMatrixDisplay.from_predictions

Plot the confusion matrix given the true and predicted labels.

ConfusionMatrixDisplay

Confusion Matrix visualization.

References

[1]

Wikipedia entry for the Confusion matrix (Wikipedia and other references may use a different convention for axes).

Examples

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])

In the binary case, we can extract true positives, etc. as follows:

>>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
>>> (tn, fp, fn, tp)
(np.int64(0), np.int64(2), np.int64(1), np.int64(1))