Tags#
- class sklearn.utils.Tags(estimator_type: str | None, target_tags: TargetTags, transformer_tags: TransformerTags | None = None, classifier_tags: ClassifierTags | None = None, regressor_tags: RegressorTags | None = None, array_api_support: bool = False, no_validation: bool = False, non_deterministic: bool = False, requires_fit: bool = True, _skip_test: bool = False, input_tags: InputTags = <factory>)[source]#
Tags for the estimator.
See Estimator Tags for more information.
- Parameters:
- estimator_typestr or None
The type of the estimator. Can be one of: - “classifier” - “regressor” - “transformer” - “clusterer” - “outlier_detector” - “density_estimator”
- target_tags
TargetTags
The target(y) tags.
- transformer_tags
TransformerTags
or None The transformer tags.
- classifier_tags
ClassifierTags
or None The classifier tags.
- regressor_tags
RegressorTags
or None The regressor tags.
- array_api_supportbool, default=False
Whether the estimator supports Array API compatible inputs.
- no_validationbool, default=False
Whether the estimator skips input-validation. This is only meant for stateless and dummy transformers!
- non_deterministicbool, default=False
Whether the estimator is not deterministic given a fixed
random_state
.- requires_fitbool, default=True
Whether the estimator requires to be fitted before calling one of
transform
,predict
,predict_proba
, ordecision_function
.- _skip_testbool, default=False
Whether to skip common tests entirely. Don’t use this unless you have a very good reason.
- input_tags
InputTags
The input data(X) tags.
Gallery examples#
Release Highlights for scikit-learn 1.6