linear_kernel#
- sklearn.metrics.pairwise.linear_kernel(X, Y=None, dense_output=True)[source]#
- Compute the linear kernel between X and Y. - Read more in the User Guide. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples_X, n_features)
- A feature array. 
- Y{array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
- An optional second feature array. If - None, uses- Y=X.
- dense_outputbool, default=True
- Whether to return dense output even when the input is sparse. If - False, the output is sparse if both input arrays are sparse.- Added in version 0.20. 
 
- Returns:
- kernelndarray of shape (n_samples_X, n_samples_Y)
- The Gram matrix of the linear kernel, i.e. - X @ Y.T.
 
 - Examples - >>> from sklearn.metrics.pairwise import linear_kernel >>> X = [[0, 0, 0], [1, 1, 1]] >>> Y = [[1, 0, 0], [1, 1, 0]] >>> linear_kernel(X, Y) array([[0., 0.], [1., 2.]]) 
