RegressorChain#
- class sklearn.multioutput.RegressorChain(estimator=None, *, order=None, cv=None, random_state=None, verbose=False, base_estimator='deprecated')[source]#
- A multi-label model that arranges regressions into a chain. - Each model makes a prediction in the order specified by the chain using all of the available features provided to the model plus the predictions of models that are earlier in the chain. - Read more in the User Guide. - Added in version 0.20. - Parameters:
- estimatorestimator
- The base estimator from which the regressor chain is built. 
- orderarray-like of shape (n_outputs,) or ‘random’, default=None
- If - None, the order will be determined by the order of columns in the label matrix Y.:- order = [0, 1, 2, ..., Y.shape[1] - 1] - The order of the chain can be explicitly set by providing a list of integers. For example, for a chain of length 5.: - order = [1, 3, 2, 4, 0] - means that the first model in the chain will make predictions for column 1 in the Y matrix, the second model will make predictions for column 3, etc. - If order is ‘random’ a random ordering will be used. 
- cvint, cross-validation generator or an iterable, default=None
- Determines whether to use cross validated predictions or true labels for the results of previous estimators in the chain. Possible inputs for cv are: - None, to use true labels when fitting, 
- integer, to specify the number of folds in a (Stratified)KFold, 
- An iterable yielding (train, test) splits as arrays of indices. 
 
- random_stateint, RandomState instance or None, optional (default=None)
- If - order='random', determines random number generation for the chain order. In addition, it controls the random seed given at each- base_estimatorat each chaining iteration. Thus, it is only used when- base_estimatorexposes a- random_state. Pass an int for reproducible output across multiple function calls. See Glossary.
- verbosebool, default=False
- If True, chain progress is output as each model is completed. - Added in version 1.2. 
- base_estimatorestimator, default=”deprecated”
- Use - estimatorinstead.- Deprecated since version 1.7: - base_estimatoris deprecated and will be removed in 1.9. Use- estimatorinstead.
 
- Attributes:
- estimators_list
- A list of clones of base_estimator. 
- order_list
- The order of labels in the classifier chain. 
- n_features_in_int
- Number of features seen during fit. Only defined if the underlying - base_estimatorexposes such an attribute when fit.- Added in version 0.24. 
- feature_names_in_ndarray of shape (n_features_in_,)
- Names of features seen during fit. Defined only when - Xhas feature names that are all strings.- Added in version 1.0. 
 
 - See also - ClassifierChain
- Equivalent for classification. 
- MultiOutputRegressor
- Learns each output independently rather than chaining. 
 - Examples - >>> from sklearn.multioutput import RegressorChain >>> from sklearn.linear_model import LogisticRegression >>> logreg = LogisticRegression(solver='lbfgs') >>> X, Y = [[1, 0], [0, 1], [1, 1]], [[0, 2], [1, 1], [2, 0]] >>> chain = RegressorChain(logreg, order=[0, 1]).fit(X, Y) >>> chain.predict(X) array([[0., 2.], [1., 1.], [2., 0.]]) - fit(X, Y, **fit_params)[source]#
- Fit the model to data matrix X and targets Y. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- The input data. 
- Yarray-like of shape (n_samples, n_classes)
- The target values. 
- **fit_paramsdict of string -> object
- Parameters passed to the - fitmethod at each step of the regressor chain.- Added in version 0.23. 
 
- Returns:
- selfobject
- Returns a fitted instance. 
 
 
 - get_metadata_routing()[source]#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Added in version 1.3. - Returns:
- routingMetadataRouter
- A - MetadataRouterencapsulating routing information.
 
 
 - get_params(deep=True)[source]#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - predict(X)[source]#
- Predict on the data matrix X using the ClassifierChain model. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- The input data. 
 
- Returns:
- Y_predarray-like of shape (n_samples, n_classes)
- The predicted values. 
 
 
 - score(X, y, sample_weight=None)[source]#
- Return coefficient of determination on test data. - The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares - ((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of- y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- Xarray-like of shape (n_samples, n_features)
- Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape - (n_samples, n_samples_fitted), where- n_samples_fittedis the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- True values for - X.
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns:
- scorefloat
- \(R^2\) of - self.predict(X)w.r.t.- y.
 
 - Notes - The \(R^2\) score used when calling - scoreon a regressor uses- multioutput='uniform_average'from version 0.23 to keep consistent with default value of- r2_score. This influences the- scoremethod of all the multioutput regressors (except for- MultiOutputRegressor).
 - set_params(**params)[source]#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') RegressorChain[source]#
- Configure whether metadata should be requested to be passed to the - scoremethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- scoreif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- score.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- score.
 
- Returns:
- selfobject
- The updated object. 
 
 
 
