PredictionErrorDisplay#
- class sklearn.metrics.PredictionErrorDisplay(*, y_true, y_pred)[source]#
- Visualization of the prediction error of a regression model. - This tool can display “residuals vs predicted” or “actual vs predicted” using scatter plots to qualitatively assess the behavior of a regressor, preferably on held-out data points. - See the details in the docstrings of - from_estimatoror- from_predictionsto create a visualizer. All parameters are stored as attributes.- For general information regarding - scikit-learnvisualization tools, read more in the Visualization Guide. For details regarding interpreting these plots, refer to the Model Evaluation Guide.- Added in version 1.2. - Parameters:
- y_truendarray of shape (n_samples,)
- True values. 
- y_predndarray of shape (n_samples,)
- Prediction values. 
 
- Attributes:
- line_matplotlib Artist
- Optimal line representing - y_true == y_pred. Therefore, it is a diagonal line for- kind="predictions"and a horizontal line for- kind="residuals".
- errors_lines_matplotlib Artist or None
- Residual lines. If - with_errors=False, then it is set to- None.
- scatter_matplotlib Artist
- Scatter data points. 
- ax_matplotlib Axes
- Axes with the different matplotlib axis. 
- figure_matplotlib Figure
- Figure containing the scatter and lines. 
 
 - See also - PredictionErrorDisplay.from_estimator
- Prediction error visualization given an estimator and some data. 
- PredictionErrorDisplay.from_predictions
- Prediction error visualization given the true and predicted targets. 
 - Examples - >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import Ridge >>> from sklearn.metrics import PredictionErrorDisplay >>> X, y = load_diabetes(return_X_y=True) >>> ridge = Ridge().fit(X, y) >>> y_pred = ridge.predict(X) >>> display = PredictionErrorDisplay(y_true=y, y_pred=y_pred) >>> display.plot() <...> >>> plt.show()   - classmethod from_estimator(estimator, X, y, *, kind='residual_vs_predicted', subsample=1000, random_state=None, ax=None, scatter_kwargs=None, line_kwargs=None)[source]#
- Plot the prediction error given a regressor and some data. - For general information regarding - scikit-learnvisualization tools, read more in the Visualization Guide. For details regarding interpreting these plots, refer to the Model Evaluation Guide.- Added in version 1.2. - Parameters:
- estimatorestimator instance
- Fitted regressor or a fitted - Pipelinein which the last estimator is a regressor.
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- Input values. 
- yarray-like of shape (n_samples,)
- Target values. 
- kind{“actual_vs_predicted”, “residual_vs_predicted”}, default=”residual_vs_predicted”
- The type of plot to draw: - “actual_vs_predicted” draws the observed values (y-axis) vs. the predicted values (x-axis). 
- “residual_vs_predicted” draws the residuals, i.e. difference between observed and predicted values, (y-axis) vs. the predicted values (x-axis). 
 
- subsamplefloat, int or None, default=1_000
- Sampling the samples to be shown on the scatter plot. If - float, it should be between 0 and 1 and represents the proportion of the original dataset. If- int, it represents the number of samples display on the scatter plot. If- None, no subsampling will be applied. by default, 1000 samples or less will be displayed.
- random_stateint or RandomState, default=None
- Controls the randomness when - subsampleis not- None. See Glossary for details.
- axmatplotlib axes, default=None
- Axes object to plot on. If - None, a new figure and axes is created.
- scatter_kwargsdict, default=None
- Dictionary with keywords passed to the - matplotlib.pyplot.scattercall.
- line_kwargsdict, default=None
- Dictionary with keyword passed to the - matplotlib.pyplot.plotcall to draw the optimal line.
 
- Returns:
- displayPredictionErrorDisplay
- Object that stores the computed values. 
 
- display
 - See also - PredictionErrorDisplay
- Prediction error visualization for regression. 
- PredictionErrorDisplay.from_predictions
- Prediction error visualization given the true and predicted targets. 
 - Examples - >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import Ridge >>> from sklearn.metrics import PredictionErrorDisplay >>> X, y = load_diabetes(return_X_y=True) >>> ridge = Ridge().fit(X, y) >>> disp = PredictionErrorDisplay.from_estimator(ridge, X, y) >>> plt.show()   
 - classmethod from_predictions(y_true, y_pred, *, kind='residual_vs_predicted', subsample=1000, random_state=None, ax=None, scatter_kwargs=None, line_kwargs=None)[source]#
- Plot the prediction error given the true and predicted targets. - For general information regarding - scikit-learnvisualization tools, read more in the Visualization Guide. For details regarding interpreting these plots, refer to the Model Evaluation Guide.- Added in version 1.2. - Parameters:
- y_truearray-like of shape (n_samples,)
- True target values. 
- y_predarray-like of shape (n_samples,)
- Predicted target values. 
- kind{“actual_vs_predicted”, “residual_vs_predicted”}, default=”residual_vs_predicted”
- The type of plot to draw: - “actual_vs_predicted” draws the observed values (y-axis) vs. the predicted values (x-axis). 
- “residual_vs_predicted” draws the residuals, i.e. difference between observed and predicted values, (y-axis) vs. the predicted values (x-axis). 
 
- subsamplefloat, int or None, default=1_000
- Sampling the samples to be shown on the scatter plot. If - float, it should be between 0 and 1 and represents the proportion of the original dataset. If- int, it represents the number of samples display on the scatter plot. If- None, no subsampling will be applied. by default, 1000 samples or less will be displayed.
- random_stateint or RandomState, default=None
- Controls the randomness when - subsampleis not- None. See Glossary for details.
- axmatplotlib axes, default=None
- Axes object to plot on. If - None, a new figure and axes is created.
- scatter_kwargsdict, default=None
- Dictionary with keywords passed to the - matplotlib.pyplot.scattercall.
- line_kwargsdict, default=None
- Dictionary with keyword passed to the - matplotlib.pyplot.plotcall to draw the optimal line.
 
- Returns:
- displayPredictionErrorDisplay
- Object that stores the computed values. 
 
- display
 - See also - PredictionErrorDisplay
- Prediction error visualization for regression. 
- PredictionErrorDisplay.from_estimator
- Prediction error visualization given an estimator and some data. 
 - Examples - >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import Ridge >>> from sklearn.metrics import PredictionErrorDisplay >>> X, y = load_diabetes(return_X_y=True) >>> ridge = Ridge().fit(X, y) >>> y_pred = ridge.predict(X) >>> disp = PredictionErrorDisplay.from_predictions(y_true=y, y_pred=y_pred) >>> plt.show()   
 - plot(ax=None, *, kind='residual_vs_predicted', scatter_kwargs=None, line_kwargs=None)[source]#
- Plot visualization. - Extra keyword arguments will be passed to matplotlib’s - plot.- Parameters:
- axmatplotlib axes, default=None
- Axes object to plot on. If - None, a new figure and axes is created.
- kind{“actual_vs_predicted”, “residual_vs_predicted”}, default=”residual_vs_predicted”
- The type of plot to draw: - “actual_vs_predicted” draws the observed values (y-axis) vs. the predicted values (x-axis). 
- “residual_vs_predicted” draws the residuals, i.e. difference between observed and predicted values, (y-axis) vs. the predicted values (x-axis). 
 
- scatter_kwargsdict, default=None
- Dictionary with keywords passed to the - matplotlib.pyplot.scattercall.
- line_kwargsdict, default=None
- Dictionary with keyword passed to the - matplotlib.pyplot.plotcall to draw the optimal line.
 
- Returns:
- displayPredictionErrorDisplay
- Object that stores computed values. 
 
- display
 
 
Gallery examples#
 
Effect of transforming the targets in regression model
 
Common pitfalls in the interpretation of coefficients of linear models
 
     
 
 
 
