polynomial_kernel#
- sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1)[source]#
- Compute the polynomial kernel between X and Y. - K(X, Y) = (gamma <X, Y> + coef0) ^ degree - Read more in the User Guide. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples_X, n_features)
- A feature array. 
- Y{array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
- An optional second feature array. If - None, uses- Y=X.
- degreefloat, default=3
- Kernel degree. 
- gammafloat, default=None
- Coefficient of the vector inner product. If None, defaults to 1.0 / n_features. 
- coef0float, default=1
- Constant offset added to scaled inner product. 
 
- Returns:
- kernelndarray of shape (n_samples_X, n_samples_Y)
- The polynomial kernel. 
 
 - Examples - >>> from sklearn.metrics.pairwise import polynomial_kernel >>> X = [[0, 0, 0], [1, 1, 1]] >>> Y = [[1, 0, 0], [1, 1, 0]] >>> polynomial_kernel(X, Y, degree=2) array([[1. , 1. ], [1.77, 2.77]]) 
