DummyRegressor#
- class sklearn.dummy.DummyRegressor(*, strategy='mean', constant=None, quantile=None)[source]#
- Regressor that makes predictions using simple rules. - This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real problems. - Read more in the User Guide. - Added in version 0.13. - Parameters:
- strategy{“mean”, “median”, “quantile”, “constant”}, default=”mean”
- Strategy to use to generate predictions. - “mean”: always predicts the mean of the training set 
- “median”: always predicts the median of the training set 
- “quantile”: always predicts a specified quantile of the training set, provided with the quantile parameter. 
- “constant”: always predicts a constant value that is provided by the user. 
 
- constantint or float or array-like of shape (n_outputs,), default=None
- The explicit constant as predicted by the “constant” strategy. This parameter is useful only for the “constant” strategy. 
- quantilefloat in [0.0, 1.0], default=None
- The quantile to predict using the “quantile” strategy. A quantile of 0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the maximum. 
 
- Attributes:
- constant_ndarray of shape (1, n_outputs)
- Mean or median or quantile of the training targets or constant value given by the user. 
- n_features_in_int
- Number of features seen during fit. 
- feature_names_in_ndarray of shape (n_features_in_,)
- Names of features seen during fit. Defined only when - Xhas feature names that are all strings.
- n_outputs_int
- Number of outputs. 
 
 - See also - DummyClassifier
- Classifier that makes predictions using simple rules. 
 - Examples - >>> import numpy as np >>> from sklearn.dummy import DummyRegressor >>> X = np.array([1.0, 2.0, 3.0, 4.0]) >>> y = np.array([2.0, 3.0, 5.0, 10.0]) >>> dummy_regr = DummyRegressor(strategy="mean") >>> dummy_regr.fit(X, y) DummyRegressor() >>> dummy_regr.predict(X) array([5., 5., 5., 5.]) >>> dummy_regr.score(X, y) 0.0 - fit(X, y, sample_weight=None)[source]#
- Fit the baseline regressor. - Parameters:
- Xarray-like of shape (n_samples, n_features)
- Training data. 
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- Target values. 
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns:
- selfobject
- Fitted estimator. 
 
 
 - get_metadata_routing()[source]#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_params(deep=True)[source]#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - predict(X, return_std=False)[source]#
- Perform classification on test vectors X. - Parameters:
- Xarray-like of shape (n_samples, n_features)
- Test data. 
- return_stdbool, default=False
- Whether to return the standard deviation of posterior prediction. All zeros in this case. - Added in version 0.20. 
 
- Returns:
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- Predicted target values for X. 
- y_stdarray-like of shape (n_samples,) or (n_samples, n_outputs)
- Standard deviation of predictive distribution of query points. 
 
 
 - score(X, y, sample_weight=None)[source]#
- Return the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as - (1 - u/v), where- uis the residual sum of squares- ((y_true - y_pred) ** 2).sum()and- vis the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.- Parameters:
- XNone or array-like of shape (n_samples, n_features)
- Test samples. Passing None as test samples gives the same result as passing real test samples, since - DummyRegressoroperates independently of the sampled observations.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- True values for X. 
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns:
- scorefloat
- R^2 of - self.predict(X)w.r.t. y.
 
 
 - set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') DummyRegressor[source]#
- Configure whether metadata should be requested to be passed to the - fitmethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- fit.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_params(**params)[source]#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_predict_request(*, return_std: bool | None | str = '$UNCHANGED$') DummyRegressor[source]#
- Configure whether metadata should be requested to be passed to the - predictmethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- predictif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- predict.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- return_stdstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - return_stdparameter in- predict.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') DummyRegressor[source]#
- Configure whether metadata should be requested to be passed to the - scoremethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- scoreif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- score.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- score.
 
- Returns:
- selfobject
- The updated object. 
 
 
 
 
     
