Fork me on GitHub


sklearn.preprocessing.normalize(X, norm='l2', axis=1, copy=True)[source]

Scale input vectors individually to unit norm (vector length).


X : array or scipy.sparse matrix with shape [n_samples, n_features]

The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.

norm : ‘l1’ or ‘l2’, optional (‘l2’ by default)

The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0).

axis : 0 or 1, optional (1 by default)

axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature.

copy : boolean, optional, default True

set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1).