Examples¶
Release Highlights¶
These examples illustrate the main features of the releases of scikit-learn.
Biclustering¶
Examples concerning the sklearn.cluster.bicluster
module.
Calibration¶
Examples illustrating the calibration of predicted probabilities of classifiers.
Classification¶
General examples about classification algorithms.
Clustering¶
Examples concerning the sklearn.cluster
module.
Covariance estimation¶
Examples concerning the sklearn.covariance
module.
Cross decomposition¶
Examples concerning the sklearn.cross_decomposition
module.
Dataset examples¶
Examples concerning the sklearn.datasets
module.
Decision Trees¶
Examples concerning the sklearn.tree
module.
Decomposition¶
Examples concerning the sklearn.decomposition
module.
Ensemble methods¶
Examples concerning the sklearn.ensemble
module.
Examples based on real world datasets¶
Applications to real world problems with some medium sized datasets or interactive user interface.
Feature Selection¶
Examples concerning the sklearn.feature_selection
module.
Gaussian Mixture Models¶
Examples concerning the sklearn.mixture
module.
Gaussian Process for Machine Learning¶
Examples concerning the sklearn.gaussian_process
module.
Generalized Linear Models¶
Examples concerning the sklearn.linear_model
module.
Inspection¶
Examples related to the sklearn.inspection
module.
Kernel Approximation¶
Examples concerning the sklearn.kernel_approximation
module.
Manifold learning¶
Examples concerning the sklearn.manifold
module.
Miscellaneous¶
Miscellaneous and introductory examples for scikit-learn.
Missing Value Imputation¶
Examples concerning the sklearn.impute
module.
Model Selection¶
Examples related to the sklearn.model_selection
module.
Multioutput methods¶
Examples concerning the sklearn.multioutput
module.
Nearest Neighbors¶
Examples concerning the sklearn.neighbors
module.
Neural Networks¶
Examples concerning the sklearn.neural_network
module.
Pipelines and composite estimators¶
Examples of how to compose transformers and pipelines from other estimators. See the User Guide.
Preprocessing¶
Examples concerning the sklearn.preprocessing
module.
Semi Supervised Classification¶
Examples concerning the sklearn.semi_supervised
module.
Support Vector Machines¶
Examples concerning the sklearn.svm
module.
Tutorial exercises¶
Exercises for the tutorials
Working with text documents¶
Examples concerning the sklearn.feature_extraction.text
module.