This is documentation for an old release of Scikit-learn (version 0.24). Try the latest stable release (version 1.6) or development (unstable) versions.
Note
Click here to download the full example code or to run this example in your browser via Binder
Compact estimator representations¶
This example illustrates the use of the print_changed_only global parameter.
Setting print_changed_only to True will alternate the representation of estimators to only show the parameters that have been set to non-default values. This can be used to have more compact representations.
Out:
Default representation:
LogisticRegression(penalty='l1')
With changed_only option:
LogisticRegression(penalty='l1')
print(__doc__)
from sklearn.linear_model import LogisticRegression
from sklearn import set_config
lr = LogisticRegression(penalty='l1')
print('Default representation:')
print(lr)
# LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
# intercept_scaling=1, l1_ratio=None, max_iter=100,
# multi_class='auto', n_jobs=None, penalty='l1',
# random_state=None, solver='warn', tol=0.0001, verbose=0,
# warm_start=False)
set_config(print_changed_only=True)
print('\nWith changed_only option:')
print(lr)
# LogisticRegression(penalty='l1')
Total running time of the script: ( 0 minutes 0.002 seconds)