Note
Click here to download the full example code or to run this example in your browser via Binder
Swiss Roll reduction with LLE¶
An illustration of Swiss Roll reduction with locally linear embedding
Out:
Computing LLE embedding
Done. Reconstruction error: 1.00184e-07
# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
# License: BSD 3 clause (C) INRIA 2011
print(__doc__)
import matplotlib.pyplot as plt
# This import is needed to modify the way figure behaves
from mpl_toolkits.mplot3d import Axes3D
Axes3D
#----------------------------------------------------------------------
# Locally linear embedding of the swiss roll
from sklearn import manifold, datasets
X, color = datasets.make_swiss_roll(n_samples=1500)
print("Computing LLE embedding")
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12,
n_components=2)
print("Done. Reconstruction error: %g" % err)
#----------------------------------------------------------------------
# Plot result
fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)
ax.set_title("Original data")
ax = fig.add_subplot(212)
ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral)
plt.axis('tight')
plt.xticks([]), plt.yticks([])
plt.title('Projected data')
plt.show()
Total running time of the script: ( 0 minutes 0.456 seconds)