sklearn.datasets
.make_swiss_roll¶
-
sklearn.datasets.
make_swiss_roll
(n_samples=100, *, noise=0.0, random_state=None)[source]¶ Generate a swiss roll dataset.
Read more in the User Guide.
- Parameters
- n_samplesint, default=100
The number of sample points on the S curve.
- noisefloat, default=0.0
The standard deviation of the gaussian noise.
- random_stateint, RandomState instance or None, default=None
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
- Returns
- Xndarray of shape (n_samples, 3)
The points.
- tndarray of shape (n_samples,)
The univariate position of the sample according to the main dimension of the points in the manifold.
Notes
The algorithm is from Marsland [1].
References
- 1
S. Marsland, “Machine Learning: An Algorithmic Perspective”, Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py