sklearn.linear_model.enet_path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params)[source]#

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||_Fro^2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2


||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

X{array-like, sparse matrix} of shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output then X can be sparse.

y{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_targets)

Target values.

l1_ratiofloat, default=0.5

Number between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.

epsfloat, default=1e-3

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphasint, default=100

Number of alphas along the regularization path.

alphasarray-like, default=None

List of alphas where to compute the models. If None alphas are set automatically.

precompute‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.

Xyarray-like of shape (n_features,) or (n_features, n_targets), default=None

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.

copy_Xbool, default=True

If True, X will be copied; else, it may be overwritten.

coef_initarray-like of shape (n_features, ), default=None

The initial values of the coefficients.

verbosebool or int, default=False

Amount of verbosity.

return_n_iterbool, default=False

Whether to return the number of iterations or not.

positivebool, default=False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_inputbool, default=True

If set to False, the input validation checks are skipped (including the Gram matrix when provided). It is assumed that they are handled by the caller.


Keyword arguments passed to the coordinate descent solver.

alphasndarray of shape (n_alphas,)

The alphas along the path where models are computed.

coefsndarray of shape (n_features, n_alphas) or (n_targets, n_features, n_alphas)

Coefficients along the path.

dual_gapsndarray of shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iterslist of int

The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also


Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.


Multi-task L1/L2 ElasticNet with built-in cross-validation.


Linear regression with combined L1 and L2 priors as regularizer.


Elastic Net model with iterative fitting along a regularization path.


For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.


>>> from sklearn.linear_model import enet_path
>>> from sklearn.datasets import make_regression
>>> X, y, true_coef = make_regression(
...    n_samples=100, n_features=5, n_informative=2, coef=True, random_state=0
... )
>>> true_coef
array([ 0.        ,  0.        ,  0.        , 97.9..., 45.7...])
>>> alphas, estimated_coef, _ = enet_path(X, y, n_alphas=3)
>>> alphas.shape
>>> estimated_coef
 array([[ 0.        ,  0.78...,  0.56...],
        [ 0.        ,  1.12...,  0.61...],
        [-0.        , -2.12..., -1.12...],
        [ 0.        , 23.04..., 88.93...],
        [ 0.        , 10.63..., 41.56...]])