load_linnerud#
- sklearn.datasets.load_linnerud(*, return_X_y=False, as_frame=False)[source]#
Load and return the physical exercise Linnerud dataset.
This dataset is suitable for multi-output regression tasks.
Samples total
20
Dimensionality
3 (for both data and target)
Features
integer
Targets
integer
Read more in the User Guide.
- Parameters:
- return_X_ybool, default=False
If True, returns
(data, target)instead of a Bunch object. See below for more information about thedataandtargetobject.Added in version 0.18.
- as_framebool, default=False
If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or Series depending on the number of target columns. If
return_X_yis True, then (data,target) will be pandas DataFrames or Series as described below.Added in version 0.23.
- Returns:
- data
Bunch Dictionary-like object, with the following attributes.
- data{ndarray, dataframe} of shape (20, 3)
The data matrix. If
as_frame=True,datawill be a pandas DataFrame.- target: {ndarray, dataframe} of shape (20, 3)
The regression targets. If
as_frame=True,targetwill be a pandas DataFrame.- feature_names: list
The names of the dataset columns.
- target_names: list
The names of the target columns.
- frame: DataFrame of shape (20, 6)
Only present when
as_frame=True. DataFrame withdataandtarget.Added in version 0.23.
- DESCR: str
The full description of the dataset.
- data_filename: str
The path to the location of the data.
- target_filename: str
The path to the location of the target.
Added in version 0.20.
- (data, target)tuple if
return_X_yis True Returns a tuple of two ndarrays or dataframe of shape
(20, 3). Each row represents one sample and each column represents the features inXand a target inyof a given sample.Added in version 0.18.
- data
Examples
>>> from sklearn.datasets import load_linnerud >>> linnerud = load_linnerud() >>> linnerud.data.shape (20, 3) >>> linnerud.target.shape (20, 3)