class sklearn.base.RegressorMixin[source]#

Mixin class for all regression estimators in scikit-learn.

This mixin defines the following functionality:

  • _estimator_type class attribute defaulting to "regressor";

  • score method that default to r2_score.

  • enforce that fit requires y to be passed through the requires_y tag.

Read more in the User Guide.


>>> import numpy as np
>>> from sklearn.base import BaseEstimator, RegressorMixin
>>> # Mixin classes should always be on the left-hand side for a correct MRO
>>> class MyEstimator(RegressorMixin, BaseEstimator):
...     def __init__(self, *, param=1):
...         self.param = param
...     def fit(self, X, y=None):
...         self.is_fitted_ = True
...         return self
...     def predict(self, X):
...         return np.full(shape=X.shape[0], fill_value=self.param)
>>> estimator = MyEstimator(param=0)
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
>>> y = np.array([-1, 0, 1])
>>>, y).predict(X)
array([0, 0, 0])
>>> estimator.score(X, y)
score(X, y, sample_weight=None)[source]#

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Xarray-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True values for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.


\(R^2\) of self.predict(X) w.r.t. y.


The \(R^2\) score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of r2_score. This influences the score method of all the multioutput regressors (except for MultiOutputRegressor).