make_friedman2#
- sklearn.datasets.make_friedman2(n_samples=100, *, noise=0.0, random_state=None)[source]#
Generate the “Friedman #2” regression problem.
This dataset is described in Friedman [1] and Breiman [2].
Inputs
X
are 4 independent features uniformly distributed on the intervals:0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11.
The output
y
is created according to the formula:y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1).
Read more in the User Guide.
- Parameters:
- n_samplesint, default=100
The number of samples.
- noisefloat, default=0.0
The standard deviation of the gaussian noise applied to the output.
- random_stateint, RandomState instance or None, default=None
Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls. See Glossary.
- Returns:
- Xndarray of shape (n_samples, 4)
The input samples.
- yndarray of shape (n_samples,)
The output values.
References
[1]J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.
[2]L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.
Examples
>>> from sklearn.datasets import make_friedman2 >>> X, y = make_friedman2(random_state=42) >>> X.shape (100, 4) >>> y.shape (100,) >>> list(y[:3]) [np.float64(1229.4...), np.float64(27.0...), np.float64(65.6...)]