check_scoring#
- sklearn.metrics.check_scoring(estimator=None, scoring=None, *, allow_none=False, raise_exc=True)[source]#
Determine scorer from user options.
A TypeError will be thrown if the estimator cannot be scored.
- Parameters:
- estimatorestimator object implementing ‘fit’ or None, default=None
The object to use to fit the data. If
None
, then this function may error depending onallow_none
.- scoringstr, callable, list, tuple, set, or dict, default=None
Scorer to use. If
scoring
represents a single score, one can use:a single string (see The scoring parameter: defining model evaluation rules);
a callable (see Defining your scoring strategy from metric functions) that returns a single value.
If
scoring
represents multiple scores, one can use:a list, tuple or set of unique strings;
a callable returning a dictionary where the keys are the metric names and the values are the metric scorers;
a dictionary with metric names as keys and callables a values. The callables need to have the signature
callable(estimator, X, y)
.
If None, the provided estimator object’s
score
method is used.- allow_nonebool, default=False
Whether to return None or raise an error if no
scoring
is specified and the estimator has noscore
method.- raise_excbool, default=True
Whether to raise an exception (if a subset of the scorers in multimetric scoring fails) or to return an error code.
If set to
True
, raises the failing scorer’s exception.If set to
False
, a formatted string of the exception details is passed as result of the failing scorer(s).
This applies if
scoring
is list, tuple, set, or dict. Ignored ifscoring
is a str or a callable.Added in version 1.6.
- Returns:
- scoringcallable
A scorer callable object / function with signature
scorer(estimator, X, y)
.
Examples
>>> from sklearn.datasets import load_iris >>> from sklearn.metrics import check_scoring >>> from sklearn.tree import DecisionTreeClassifier >>> X, y = load_iris(return_X_y=True) >>> classifier = DecisionTreeClassifier(max_depth=2).fit(X, y) >>> scorer = check_scoring(classifier, scoring='accuracy') >>> scorer(classifier, X, y) 0.96...
>>> from sklearn.metrics import make_scorer, accuracy_score, mean_squared_log_error >>> X, y = load_iris(return_X_y=True) >>> y *= -1 >>> clf = DecisionTreeClassifier().fit(X, y) >>> scoring = { ... "accuracy": make_scorer(accuracy_score), ... "mean_squared_log_error": make_scorer(mean_squared_log_error), ... } >>> scoring_call = check_scoring(estimator=clf, scoring=scoring, raise_exc=False) >>> scores = scoring_call(clf, X, y) >>> scores {'accuracy': 1.0, 'mean_squared_log_error': 'Traceback ...'}