InputTags#
- class sklearn.utils.InputTags(one_d_array: bool = False, two_d_array: bool = True, three_d_array: bool = False, sparse: bool = False, categorical: bool = False, string: bool = False, dict: bool = False, positive_only: bool = False, allow_nan: bool = False, pairwise: bool = False)[source]#
Tags for the input data.
- Parameters:
- one_d_arraybool, default=False
Whether the input can be a 1D array.
- two_d_arraybool, default=True
Whether the input can be a 2D array. Note that most common tests currently run only if this flag is set to
True
.- three_d_arraybool, default=False
Whether the input can be a 3D array.
- sparsebool, default=False
Whether the input can be a sparse matrix.
- categoricalbool, default=False
Whether the input can be categorical.
- stringbool, default=False
Whether the input can be an array-like of strings.
- dictbool, default=False
Whether the input can be a dictionary.
- positive_onlybool, default=False
Whether the estimator requires positive X.
- allow_nanbool, default=False
Whether the estimator supports data with missing values encoded as
np.nan
.- pairwisebool, default=False
This boolean attribute indicates whether the data (
X
), fit and similar methods consists of pairwise measures over samples rather than a feature representation for each sample. It is usuallyTrue
where an estimator has ametric
oraffinity
orkernel
parameter with value ‘precomputed’. Its primary purpose is to support a meta-estimator or a cross validation procedure that extracts a sub-sample of data intended for a pairwise estimator, where the data needs to be indexed on both axes. Specifically, this tag is used bysklearn.utils.metaestimators._safe_split
to slice rows and columns.