sklearn.metrics
.DetCurveDisplay¶
-
class
sklearn.metrics.
DetCurveDisplay
(*, fpr, fnr, estimator_name=None, pos_label=None)[source]¶ DET curve visualization.
It is recommend to use
plot_det_curve
to create a visualizer. All parameters are stored as attributes.Read more in the User Guide.
New in version 0.24.
- Parameters
- fprndarray
False positive rate.
- fnrndarray
False negative rate.
- estimator_namestr, default=None
Name of estimator. If None, the estimator name is not shown.
- pos_labelstr or int, default=None
The label of the positive class.
- Attributes
- line_matplotlib Artist
DET Curve.
- ax_matplotlib Axes
Axes with DET Curve.
- figure_matplotlib Figure
Figure containing the curve.
See also
det_curve
Compute error rates for different probability thresholds.
plot_det_curve
Plot detection error tradeoff (DET) curve.
Examples
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([0, 0, 1, 1]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, fnr, thresholds = metrics.det_curve(y, pred) >>> display = metrics.DetCurveDisplay( ... fpr=fpr, fnr=fnr, estimator_name='example estimator' ... ) >>> display.plot() >>> plt.show()
Methods
plot
([ax, name])Plot visualization.
-
plot
(ax=None, *, name=None, **kwargs)[source]¶ Plot visualization.
- Parameters
- axmatplotlib axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- namestr, default=None
Name of DET curve for labeling. If
None
, use the name of the estimator.
- Returns
- display
DetCurveDisplay
Object that stores computed values.
- display