sklearn.metrics
.PrecisionRecallDisplay¶
-
class
sklearn.metrics.
PrecisionRecallDisplay
(precision, recall, *, average_precision=None, estimator_name=None, pos_label=None)[source]¶ Precision Recall visualization.
It is recommend to use
plot_precision_recall_curve
to create a visualizer. All parameters are stored as attributes.Read more in the User Guide.
- Parameters
- precisionndarray
Precision values.
- recallndarray
Recall values.
- average_precisionfloat, default=None
Average precision. If None, the average precision is not shown.
- estimator_namestr, default=None
Name of estimator. If None, then the estimator name is not shown.
- pos_labelstr or int, default=None
The class considered as the positive class. If None, the class will not be shown in the legend.
New in version 0.24.
- Attributes
- line_matplotlib Artist
Precision recall curve.
- ax_matplotlib Axes
Axes with precision recall curve.
- figure_matplotlib Figure
Figure containing the curve.
See also
precision_recall_curve
Compute precision-recall pairs for different probability thresholds.
plot_precision_recall_curve
Plot Precision Recall Curve for binary classifiers.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.metrics import (precision_recall_curve, ... PrecisionRecallDisplay) >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> clf = SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> predictions = clf.predict(X_test) >>> precision, recall, _ = precision_recall_curve(y_test, predictions) >>> disp = PrecisionRecallDisplay(precision=precision, recall=recall) >>> disp.plot()
Methods
plot
([ax, name])Plot visualization.
-
plot
(ax=None, *, name=None, **kwargs)[source]¶ Plot visualization.
Extra keyword arguments will be passed to matplotlib’s
plot
.- Parameters
- axMatplotlib Axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- namestr, default=None
Name of precision recall curve for labeling. If
None
, use the name of the estimator.- **kwargsdict
Keyword arguments to be passed to matplotlib’s
plot
.
- Returns
- display
PrecisionRecallDisplay
Object that stores computed values.
- display