sklearn.metrics
.ConfusionMatrixDisplay¶
-
class
sklearn.metrics.
ConfusionMatrixDisplay
(confusion_matrix, *, display_labels=None)[source]¶ Confusion Matrix visualization.
It is recommend to use
plot_confusion_matrix
to create aConfusionMatrixDisplay
. All parameters are stored as attributes.Read more in the User Guide.
- Parameters
- confusion_matrixndarray of shape (n_classes, n_classes)
Confusion matrix.
- display_labelsndarray of shape (n_classes,), default=None
Display labels for plot. If None, display labels are set from 0 to
n_classes - 1
.
- Attributes
- im_matplotlib AxesImage
Image representing the confusion matrix.
- text_ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, or None
Array of matplotlib axes.
None
ifinclude_values
is false.- ax_matplotlib Axes
Axes with confusion matrix.
- figure_matplotlib Figure
Figure containing the confusion matrix.
See also
confusion_matrix
Compute Confusion Matrix to evaluate the accuracy of a classification.
ConfusionMatrixDisplay.from_estimator
Plot the confusion matrix given an estimator, the data, and the label.
ConfusionMatrixDisplay.from_predictions
Plot the confusion matrix given the true and predicted labels.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> clf = SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> predictions = clf.predict(X_test) >>> cm = confusion_matrix(y_test, predictions, labels=clf.classes_) >>> disp = ConfusionMatrixDisplay(confusion_matrix=cm, ... display_labels=clf.classes_) >>> disp.plot()
Methods
plot
(*[, include_values, cmap, …])Plot visualization.
-
plot
(*, include_values=True, cmap='viridis', xticks_rotation='horizontal', values_format=None, ax=None, colorbar=True)[source]¶ Plot visualization.
- Parameters
- include_valuesbool, default=True
Includes values in confusion matrix.
- cmapstr or matplotlib Colormap, default=’viridis’
Colormap recognized by matplotlib.
- xticks_rotation{‘vertical’, ‘horizontal’} or float, default=’horizontal’
Rotation of xtick labels.
- values_formatstr, default=None
Format specification for values in confusion matrix. If
None
, the format specification is ‘d’ or ‘.2g’ whichever is shorter.- axmatplotlib axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- colorbarbool, default=True
Whether or not to add a colorbar to the plot.
- Returns
- display
ConfusionMatrixDisplay
- display