sklearn.metrics
.plot_det_curve¶
-
sklearn.metrics.
plot_det_curve
(estimator, X, y, *, sample_weight=None, response_method='auto', name=None, ax=None, pos_label=None, **kwargs)[source]¶ Plot detection error tradeoff (DET) curve.
Extra keyword arguments will be passed to matplotlib’s
plot
.Read more in the User Guide.
New in version 0.24.
- Parameters
- estimatorestimator instance
Fitted classifier or a fitted
Pipeline
in which the last estimator is a classifier.- X{array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
- yarray-like of shape (n_samples,)
Target values.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- response_method{‘predict_proba’, ‘decision_function’, ‘auto’} default=’auto’
Specifies whether to use predict_proba or decision_function as the predicted target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next.
- namestr, default=None
Name of DET curve for labeling. If
None
, use the name of the estimator.- axmatplotlib axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- pos_labelstr or int, default=None
The label of the positive class. When
pos_label=None
, ify_true
is in {-1, 1} or {0, 1},pos_label
is set to 1, otherwise an error will be raised.
- Returns
- display
DetCurveDisplay
Object that stores computed values.
- display
See also
det_curve
Compute error rates for different probability thresholds.
DetCurveDisplay
DET curve visualization.
plot_roc_curve
Plot Receiver operating characteristic (ROC) curve.
Examples
>>> import matplotlib.pyplot as plt >>> from sklearn import datasets, metrics, model_selection, svm >>> X, y = datasets.make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = model_selection.train_test_split( ... X, y, random_state=0) >>> clf = svm.SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> metrics.plot_det_curve(clf, X_test, y_test) >>> plt.show()