Lasso path using LARS

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter.

LASSO Path
Computing regularization path using the LARS ...
.

# Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
#         Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets, linear_model

X, y = datasets.load_diabetes(return_X_y=True)

print("Computing regularization path using the LARS ...")
_, _, coefs = linear_model.lars_path(X, y, method="lasso", verbose=True)

xx = np.sum(np.abs(coefs.T), axis=1)
xx /= xx[-1]

plt.plot(xx, coefs.T)
ymin, ymax = plt.ylim()
plt.vlines(xx, ymin, ymax, linestyle="dashed")
plt.xlabel("|coef| / max|coef|")
plt.ylabel("Coefficients")
plt.title("LASSO Path")
plt.axis("tight")
plt.show()

Total running time of the script: (0 minutes 0.077 seconds)

Related examples

Regularization path of L1- Logistic Regression

Regularization path of L1- Logistic Regression

Joint feature selection with multi-task Lasso

Joint feature selection with multi-task Lasso

Lasso and Elastic Net

Lasso and Elastic Net

Plot Ridge coefficients as a function of the regularization

Plot Ridge coefficients as a function of the regularization

Lasso model selection: AIC-BIC / cross-validation

Lasso model selection: AIC-BIC / cross-validation

Gallery generated by Sphinx-Gallery