This is documentation for an old release of Scikit-learn (version 1.4). Try the latest stable release (version 1.6) or development (unstable) versions.

Lasso path using LARS

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter.

LASSO Path
Computing regularization path using the LARS ...
.

# Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
#         Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets, linear_model

X, y = datasets.load_diabetes(return_X_y=True)

print("Computing regularization path using the LARS ...")
_, _, coefs = linear_model.lars_path(X, y, method="lasso", verbose=True)

xx = np.sum(np.abs(coefs.T), axis=1)
xx /= xx[-1]

plt.plot(xx, coefs.T)
ymin, ymax = plt.ylim()
plt.vlines(xx, ymin, ymax, linestyle="dashed")
plt.xlabel("|coef| / max|coef|")
plt.ylabel("Coefficients")
plt.title("LASSO Path")
plt.axis("tight")
plt.show()

Total running time of the script: (0 minutes 0.077 seconds)

Related examples

Regularization path of L1- Logistic Regression

Regularization path of L1- Logistic Regression

Joint feature selection with multi-task Lasso

Joint feature selection with multi-task Lasso

Lasso and Elastic Net

Lasso and Elastic Net

Plot Ridge coefficients as a function of the regularization

Plot Ridge coefficients as a function of the regularization

Lasso model selection: AIC-BIC / cross-validation

Lasso model selection: AIC-BIC / cross-validation

Gallery generated by Sphinx-Gallery