SVM-Anova: SVM with univariate feature selection

This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification scores. We use the iris dataset (4 features) and add 36 non-informative features. We can find that our model achieves best performance when we select around 10% of features.

Load some data to play with

import numpy as np

from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)

# Add non-informative features
rng = np.random.RandomState(0)
X = np.hstack((X, 2 * rng.random((X.shape[0], 36))))

Create the pipeline

from sklearn.feature_selection import SelectPercentile, f_classif
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

# Create a feature-selection transform, a scaler and an instance of SVM that we
# combine together to have a full-blown estimator

clf = Pipeline(
        ("anova", SelectPercentile(f_classif)),
        ("scaler", StandardScaler()),
        ("svc", SVC(gamma="auto")),

Plot the cross-validation score as a function of percentile of features

import matplotlib.pyplot as plt

from sklearn.model_selection import cross_val_score

score_means = list()
score_stds = list()
percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100)

for percentile in percentiles:
    this_scores = cross_val_score(clf, X, y)

plt.errorbar(percentiles, score_means, np.array(score_stds))
plt.title("Performance of the SVM-Anova varying the percentile of features selected")
plt.xticks(np.linspace(0, 100, 11, endpoint=True))
plt.ylabel("Accuracy Score")
Performance of the SVM-Anova varying the percentile of features selected

Total running time of the script: (0 minutes 0.334 seconds)

Gallery generated by Sphinx-Gallery