sklearn.preprocessing
.PowerTransformer¶
-
class
sklearn.preprocessing.
PowerTransformer
(method='yeo-johnson', *, standardize=True, copy=True)[source]¶ Apply a power transform featurewise to make data more Gaussian-like.
Power transforms are a family of parametric, monotonic transformations that are applied to make data more Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other situations where normality is desired.
Currently, PowerTransformer supports the Box-Cox transform and the Yeo-Johnson transform. The optimal parameter for stabilizing variance and minimizing skewness is estimated through maximum likelihood.
Box-Cox requires input data to be strictly positive, while Yeo-Johnson supports both positive or negative data.
By default, zero-mean, unit-variance normalization is applied to the transformed data.
Read more in the User Guide.
New in version 0.20.
- Parameters
- method{‘yeo-johnson’, ‘box-cox’}, default=’yeo-johnson’
The power transform method. Available methods are:
- standardizebool, default=True
Set to True to apply zero-mean, unit-variance normalization to the transformed output.
- copybool, default=True
Set to False to perform inplace computation during transformation.
- Attributes
- lambdas_ndarray of float of shape (n_features,)
The parameters of the power transformation for the selected features.
See also
power_transform
Equivalent function without the estimator API.
QuantileTransformer
Maps data to a standard normal distribution with the parameter
output_distribution='normal'
.
Notes
NaNs are treated as missing values: disregarded in
fit
, and maintained intransform
.For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.
References
- 1
I.K. Yeo and R.A. Johnson, “A new family of power transformations to improve normality or symmetry.” Biometrika, 87(4), pp.954-959, (2000).
- 2
G.E.P. Box and D.R. Cox, “An Analysis of Transformations”, Journal of the Royal Statistical Society B, 26, 211-252 (1964).
Examples
>>> import numpy as np >>> from sklearn.preprocessing import PowerTransformer >>> pt = PowerTransformer() >>> data = [[1, 2], [3, 2], [4, 5]] >>> print(pt.fit(data)) PowerTransformer() >>> print(pt.lambdas_) [ 1.386... -3.100...] >>> print(pt.transform(data)) [[-1.316... -0.707...] [ 0.209... -0.707...] [ 1.106... 1.414...]]
Methods
fit
(X[, y])Estimate the optimal parameter lambda for each feature.
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
Apply the inverse power transformation using the fitted lambdas.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Apply the power transform to each feature using the fitted lambdas.
-
fit
(X, y=None)[source]¶ Estimate the optimal parameter lambda for each feature.
The optimal lambda parameter for minimizing skewness is estimated on each feature independently using maximum likelihood.
- Parameters
- Xarray-like of shape (n_samples, n_features)
The data used to estimate the optimal transformation parameters.
- yNone
Ignored.
- Returns
- selfobject
Fitted transformer.
-
fit_transform
(X, y=None)[source]¶ Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
inverse_transform
(X)[source]¶ Apply the inverse power transformation using the fitted lambdas.
The inverse of the Box-Cox transformation is given by:
if lambda_ == 0: X = exp(X_trans) else: X = (X_trans * lambda_ + 1) ** (1 / lambda_)
The inverse of the Yeo-Johnson transformation is given by:
if X >= 0 and lambda_ == 0: X = exp(X_trans) - 1 elif X >= 0 and lambda_ != 0: X = (X_trans * lambda_ + 1) ** (1 / lambda_) - 1 elif X < 0 and lambda_ != 2: X = 1 - (-(2 - lambda_) * X_trans + 1) ** (1 / (2 - lambda_)) elif X < 0 and lambda_ == 2: X = 1 - exp(-X_trans)
- Parameters
- Xarray-like of shape (n_samples, n_features)
The transformed data.
- Returns
- Xndarray of shape (n_samples, n_features)
The original data.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.