sklearn.kernel_approximation.SkewedChi2Sampler

class sklearn.kernel_approximation.SkewedChi2Sampler(skewedness=1.0, n_components=100, random_state=None)[source]

Approximates feature map of the “skewed chi-squared” kernel by Monte Carlo approximation of its Fourier transform.

Read more in the User Guide.

Parameters
skewednessfloat

“skewedness” parameter of the kernel. Needs to be cross-validated.

n_componentsint

number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space.

random_stateint, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

See also

AdditiveChi2Sampler

A different approach for approximating an additive variant of the chi squared kernel.

sklearn.metrics.pairwise.chi2_kernel

The exact chi squared kernel.

References

See “Random Fourier Approximations for Skewed Multiplicative Histogram Kernels” by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu.

Examples

>>> from sklearn.kernel_approximation import SkewedChi2Sampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> chi2_feature = SkewedChi2Sampler(skewedness=.01,
...                                  n_components=10,
...                                  random_state=0)
>>> X_features = chi2_feature.fit_transform(X, y)
>>> clf = SGDClassifier(max_iter=10, tol=1e-3)
>>> clf.fit(X_features, y)
SGDClassifier(max_iter=10)
>>> clf.score(X_features, y)
1.0

Methods

fit(self, X[, y])

Fit the model with X.

fit_transform(self, X[, y])

Fit to data, then transform it.

get_params(self[, deep])

Get parameters for this estimator.

set_params(self, \*\*params)

Set the parameters of this estimator.

transform(self, X)

Apply the approximate feature map to X.

__init__(self, skewedness=1.0, n_components=100, random_state=None)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(self, X, y=None)[source]

Fit the model with X.

Samples random projection according to n_features.

Parameters
Xarray-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number of features.

Returns
selfobject

Returns the transformer.

fit_transform(self, X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
Xnumpy array of shape [n_samples, n_features]

Training set.

ynumpy array of shape [n_samples]

Target values.

**fit_paramsdict

Additional fit parameters.

Returns
X_newnumpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(self, deep=True)[source]

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsmapping of string to any

Parameter names mapped to their values.

set_params(self, **params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfobject

Estimator instance.

transform(self, X)[source]

Apply the approximate feature map to X.

Parameters
Xarray-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of features. All values of X must be strictly greater than “-skewedness”.

Returns
X_newarray-like, shape (n_samples, n_components)