sklearn.kernel_approximation
.RBFSampler¶
-
class
sklearn.kernel_approximation.
RBFSampler
(gamma=1.0, n_components=100, random_state=None)[source]¶ Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform.
It implements a variant of Random Kitchen Sinks.[1]
Read more in the User Guide.
- Parameters
- gammafloat
Parameter of RBF kernel: exp(-gamma * x^2)
- n_componentsint
Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space.
- random_stateint, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by
np.random
.
Notes
See “Random Features for Large-Scale Kernel Machines” by A. Rahimi and Benjamin Recht.
[1] “Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning” by A. Rahimi and Benjamin Recht. (https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)
Examples
>>> from sklearn.kernel_approximation import RBFSampler >>> from sklearn.linear_model import SGDClassifier >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] >>> y = [0, 0, 1, 1] >>> rbf_feature = RBFSampler(gamma=1, random_state=1) >>> X_features = rbf_feature.fit_transform(X) >>> clf = SGDClassifier(max_iter=5, tol=1e-3) >>> clf.fit(X_features, y) SGDClassifier(max_iter=5) >>> clf.score(X_features, y) 1.0
Methods
fit
(self, X[, y])Fit the model with X.
fit_transform
(self, X[, y])Fit to data, then transform it.
get_params
(self[, deep])Get parameters for this estimator.
set_params
(self, \*\*params)Set the parameters of this estimator.
transform
(self, X)Apply the approximate feature map to X.
-
__init__
(self, gamma=1.0, n_components=100, random_state=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(self, X, y=None)[source]¶ Fit the model with X.
Samples random projection according to n_features.
- Parameters
- X{array-like, sparse matrix}, shape (n_samples, n_features)
Training data, where n_samples in the number of samples and n_features is the number of features.
- Returns
- selfobject
Returns the transformer.
-
fit_transform
(self, X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
- Xnumpy array of shape [n_samples, n_features]
Training set.
- ynumpy array of shape [n_samples]
Target values.
- **fit_paramsdict
Additional fit parameters.
- Returns
- X_newnumpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(self, deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
set_params
(self, **params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfobject
Estimator instance.