sklearn.cluster.AgglomerativeClustering¶
-
class
sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity='euclidean', memory=None, connectivity=None, compute_full_tree='auto', linkage='ward', distance_threshold=None)[source]¶ Agglomerative Clustering
Recursively merges the pair of clusters that minimally increases a given linkage distance.
Read more in the User Guide.
- Parameters
- n_clustersint or None, default=2
The number of clusters to find. It must be
Noneifdistance_thresholdis notNone.- affinitystr or callable, default=’euclidean’
Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”, “manhattan”, “cosine”, or “precomputed”. If linkage is “ward”, only “euclidean” is accepted. If “precomputed”, a distance matrix (instead of a similarity matrix) is needed as input for the fit method.
- memorystr or object with the joblib.Memory interface, default=None
Used to cache the output of the computation of the tree. By default, no caching is done. If a string is given, it is the path to the caching directory.
- connectivityarray-like or callable, default=None
Connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. This can be a connectivity matrix itself or a callable that transforms the data into a connectivity matrix, such as derived from kneighbors_graph. Default is None, i.e, the hierarchical clustering algorithm is unstructured.
- compute_full_tree‘auto’ or bool, default=’auto’
Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. This option is useful only when specifying a connectivity matrix. Note also that when varying the number of clusters and using caching, it may be advantageous to compute the full tree. It must be
Trueifdistance_thresholdis notNone. By defaultcompute_full_treeis “auto”, which is equivalent toTruewhendistance_thresholdis notNoneor thatn_clustersis inferior to the maximum between 100 or0.02 * n_samples. Otherwise, “auto” is equivalent toFalse.- linkage{“ward”, “complete”, “average”, “single”}, default=”ward”
Which linkage criterion to use. The linkage criterion determines which distance to use between sets of observation. The algorithm will merge the pairs of cluster that minimize this criterion.
ward minimizes the variance of the clusters being merged.
average uses the average of the distances of each observation of the two sets.
complete or maximum linkage uses the maximum distances between all observations of the two sets.
single uses the minimum of the distances between all observations of the two sets.
- distance_thresholdfloat, default=None
The linkage distance threshold above which, clusters will not be merged. If not
None,n_clustersmust beNoneandcompute_full_treemust beTrue.New in version 0.21.
- Attributes
- n_clusters_int
The number of clusters found by the algorithm. If
distance_threshold=None, it will be equal to the givenn_clusters.- labels_ndarray of shape (n_samples)
cluster labels for each point
- n_leaves_int
Number of leaves in the hierarchical tree.
- n_connected_components_int
The estimated number of connected components in the graph.
- children_array-like of shape (n_samples-1, 2)
The children of each non-leaf node. Values less than
n_samplescorrespond to leaves of the tree which are the original samples. A nodeigreater than or equal ton_samplesis a non-leaf node and has childrenchildren_[i - n_samples]. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form noden_samples + i
Examples
>>> from sklearn.cluster import AgglomerativeClustering >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 4], [4, 0]]) >>> clustering = AgglomerativeClustering().fit(X) >>> clustering AgglomerativeClustering() >>> clustering.labels_ array([1, 1, 1, 0, 0, 0])
Methods
fit(self, X[, y])Fit the hierarchical clustering from features, or distance matrix.
fit_predict(self, X[, y])Fit the hierarchical clustering from features or distance matrix, and return cluster labels.
get_params(self[, deep])Get parameters for this estimator.
set_params(self, \*\*params)Set the parameters of this estimator.
-
__init__(self, n_clusters=2, affinity='euclidean', memory=None, connectivity=None, compute_full_tree='auto', linkage='ward', distance_threshold=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit(self, X, y=None)[source]¶ Fit the hierarchical clustering from features, or distance matrix.
- Parameters
- Xarray-like, shape (n_samples, n_features) or (n_samples, n_samples)
Training instances to cluster, or distances between instances if
affinity='precomputed'.- yIgnored
Not used, present here for API consistency by convention.
- Returns
- self
-
fit_predict(self, X, y=None)[source]¶ Fit the hierarchical clustering from features or distance matrix, and return cluster labels.
- Parameters
- Xarray-like, shape (n_samples, n_features) or (n_samples, n_samples)
Training instances to cluster, or distances between instances if
affinity='precomputed'.- yIgnored
Not used, present here for API consistency by convention.
- Returns
- labelsndarray, shape (n_samples,)
Cluster labels.
-
get_params(self, deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
set_params(self, **params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfobject
Estimator instance.