Note
Click here to download the full example code or to run this example in your browser via Binder
Recursive feature elimination¶
A recursive feature elimination example showing the relevance of pixels in a digit classification task.
Note
See also Recursive feature elimination with cross-validation
print(__doc__)
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE
import matplotlib.pyplot as plt
# Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target
# Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)
# Plot pixel ranking
plt.matshow(ranking, cmap=plt.cm.Blues)
plt.colorbar()
plt.title("Ranking of pixels with RFE")
plt.show()
Total running time of the script: ( 0 minutes 3.766 seconds)
Estimated memory usage: 8 MB