Column Transformer with Mixed Types

This example illustrates how to apply different preprocessing and feature extraction pipelines to different subsets of features, using sklearn.compose.ColumnTransformer. This is particularly handy for the case of datasets that contain heterogeneous data types, since we may want to scale the numeric features and one-hot encode the categorical ones.

In this example, the numeric data is standard-scaled after mean-imputation, while the categorical data is one-hot encoded after imputing missing values with a new category ('missing').

Finally, the preprocessing pipeline is integrated in a full prediction pipeline using sklearn.pipeline.Pipeline, together with a simple classification model.

# Author: Pedro Morales <>
# License: BSD 3 clause

import pandas as pd
import numpy as np

from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, GridSearchCV


# Read data from Titanic dataset.
titanic_url = (''
data = pd.read_csv(titanic_url)

# We will train our classifier with the following features:
# Numeric Features:
# - age: float.
# - fare: float.
# Categorical Features:
# - embarked: categories encoded as strings {'C', 'S', 'Q'}.
# - sex: categories encoded as strings {'female', 'male'}.
# - pclass: ordinal integers {1, 2, 3}.

# We create the preprocessing pipelines for both numeric and categorical data.
numeric_features = ['age', 'fare']
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())])

categorical_features = ['embarked', 'sex', 'pclass']
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)])

# Append classifier to preprocessing pipeline.
# Now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor', preprocessor),
                      ('classifier', LogisticRegression(solver='lbfgs'))])

X = data.drop('survived', axis=1)
y = data['survived']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2), y_train)
print("model score: %.3f" % clf.score(X_test, y_test))


model score: 0.790