sklearn.datasets
.make_moons¶
-
sklearn.datasets.
make_moons
(n_samples=100, shuffle=True, noise=None, random_state=None)[source]¶ Make two interleaving half circles
A simple toy dataset to visualize clustering and classification algorithms. Read more in the User Guide.
Parameters: n_samples : int, optional (default=100)
The total number of points generated.
shuffle : bool, optional (default=True)
Whether to shuffle the samples.
noise : double or None (default=None)
Standard deviation of Gaussian noise added to the data.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Returns: X : array of shape [n_samples, 2]
The generated samples.
y : array of shape [n_samples]
The integer labels (0 or 1) for class membership of each sample.