Home
Installation
Documentation
Scikit-learn
Tutorials
User guide
API
FAQ
Contributing
All available versions
PDF documentation
Examples
Previous
sklearn.learn...
sklearn.learning_curve.validation_curve
Next
Contributing
Contributing
scikit-learn v0.19.2
Other versions
Please
cite us
if you use the software.
Developer’s Guide
Developer’s Guide
¶
Contributing
Submitting a bug report
Ways to contribute
Retrieving the latest code
Contributing code
How to contribute
Contributing pull requests
Filing Bugs
Issues for New Contributors
Documentation
Testing and improving test coverage
Developers web site
Issue Tracker Tags
Coding guidelines
Input validation
Random Numbers
Deprecation
Python versions supported
Code Review Guidelines
APIs of scikit-learn objects
Different objects
Estimators
Instantiation
Fitting
Estimated Attributes
Optional Arguments
Rolling your own estimator
get_params and set_params
Parameters and init
Cloning
Pipeline compatibility
Estimator types
Working notes
Specific models
Developers’ Tips and Tricks
Productivity and sanity-preserving tips
Viewing the rendered HTML documentation for a pull request
Folding and unfolding outdated diffs on pull requests
Checking out pull requests as remote-tracking branches
Display code coverage in pull requests
Useful pytest aliases and flags
Debugging memory errors in Cython with valgrind
Utilities for Developers
Validation Tools
Efficient Linear Algebra & Array Operations
Efficient Random Sampling
Efficient Routines for Sparse Matrices
Graph Routines
Benchmarking
Testing Functions
Multiclass and multilabel utility function
Helper Functions
Hash Functions
Warnings and Exceptions
How to optimize for speed
Python, Cython or C/C++?
Profiling Python code
Memory usage profiling
Performance tips for the Cython developer
Profiling compiled extensions
Using yep and google-perftools
Using gprof
Using valgrind / callgrind / kcachegrind
Multi-core parallelism using
joblib.Parallel
A sample algorithmic trick: warm restarts for cross validation
Advanced installation instructions
Installing an official release
Mac OSX
Linux
Installing build dependencies
Building scikit-learn with pip
From source package
Windows
Third party distributions of scikit-learn
MacPorts for Mac OSX
Arch Linux
NetBSD
Fedora
Building on windows
32-bit Python
64-bit Python
Building binary packages and installers
Using an alternative compiler
Bleeding Edge
Testing
Testing scikit-learn once installed
Testing scikit-learn from within the source folder
Maintainer / core-developer information
Making a release
Previous
Next