Fork me on GitHub

sklearn.cluster.FeatureAgglomeration

class sklearn.cluster.FeatureAgglomeration(n_clusters=2, affinity='euclidean', memory=Memory(cachedir=None), connectivity=None, n_components=None, compute_full_tree='auto', linkage='ward', pooling_func=<function mean at 0x2b3eef778320>)

Methods

fit(X[, y]) Fit the hierarchical clustering on the data
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xred) Inverse the transformation.
pooling_func(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis.
set_params(**params) Set the parameters of this estimator.
transform(X[, pooling_func]) Transform a new matrix using the built clustering
__init__(n_clusters=2, affinity='euclidean', memory=Memory(cachedir=None), connectivity=None, n_components=None, compute_full_tree='auto', linkage='ward', pooling_func=<function mean at 0x2b3eef778320>)
fit(X, y=None, **params)

Fit the hierarchical clustering on the data

Parameters:

X : array-like, shape = [n_samples, n_features]

The data

Returns:

self :

fit_predict(X, y=None)

Performs clustering on X and returns cluster labels.

Parameters:

X : ndarray, shape (n_samples, n_features)

Input data.

Returns:

y : ndarray, shape (n_samples,)

cluster labels

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:

X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns:

X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)

Get parameters for this estimator.

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xred)

Inverse the transformation. Return a vector of size nb_features with the values of Xred assigned to each group of features

Parameters:

Xred : array-like, shape=[n_samples, n_clusters] or [n_clusters,]

The values to be assigned to each cluster of samples

Returns:

X : array, shape=[n_samples, n_features] or [n_features]

A vector of size n_samples with the values of Xred assigned to each of the cluster of samples.

pooling_func(a, axis=None, dtype=None, out=None, keepdims=False)

Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters:

a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

Returns:

m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

See also

average
Weighted average

std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2.,  3.])
>>> np.mean(a, axis=1)
array([ 1.5,  3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.546875

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806
set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:self :
transform(X, pooling_func=None)

Transform a new matrix using the built clustering

Parameters:

X : array-like, shape = [n_samples, n_features] or [n_features]

A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations.

pooling_func : callable, default=np.mean

This combines the values of agglomerated features into a single value, and should accept an array of shape [M, N] and the keyword argument axis=1, and reduce it to an array of size [M].

Returns:

Y : array, shape = [n_samples, n_clusters] or [n_clusters]

The pooled values for each feature cluster.

Examples using sklearn.cluster.FeatureAgglomeration

Previous
Next