sklearn.base.ClassifierMixin

class sklearn.base.ClassifierMixin[source]

Mixin class for all classifiers in scikit-learn.

This mixin defines the following functionality:

  • _estimator_type class attribute defaulting to "classifier";

  • score method that default to accuracy_score.

  • enforce that fit requires y to be passed through the requires_y tag.

Read more in the User Guide.

Examples

>>> import numpy as np
>>> from sklearn.base import BaseEstimator, ClassifierMixin
>>> # Mixin classes should always be on the left-hand side for a correct MRO
>>> class MyEstimator(ClassifierMixin, BaseEstimator):
...     def __init__(self, *, param=1):
...         self.param = param
...     def fit(self, X, y=None):
...         self.is_fitted_ = True
...         return self
...     def predict(self, X):
...         return np.full(shape=X.shape[0], fill_value=self.param)
>>> estimator = MyEstimator(param=1)
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
>>> y = np.array([1, 0, 1])
>>> estimator.fit(X, y).predict(X)
array([1, 1, 1])
>>> estimator.score(X, y)
0.66...

Methods

score(X, y[, sample_weight])

Return the mean accuracy on the given test data and labels.

score(X, y, sample_weight=None)[source]

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters:
Xarray-like of shape (n_samples, n_features)

Test samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True labels for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns:
scorefloat

Mean accuracy of self.predict(X) w.r.t. y.

Examples using sklearn.base.ClassifierMixin

__sklearn_is_fitted__ as Developer API

__sklearn_is_fitted__ as Developer API

Metadata Routing

Metadata Routing