Table Of Contents¶
- Welcome to scikit-learn
- scikit-learn Tutorials
- Getting Started
- User Guide
- 1. Supervised learning
- 2. Unsupervised learning
- 3. Model selection and evaluation
- 4. Inspection
- 5. Visualizations
- 6. Dataset transformations
- 7. Dataset loading utilities
- 8. Computing with scikit-learn
- 9. Model persistence
- 10. Common pitfalls and recommended practices
- 11. Dispatching
- Under Development
- Glossary of Common Terms and API Elements
- Examples
- Release Highlights
- Biclustering
- Calibration
- Classification
- Clustering
- Covariance estimation
- Cross decomposition
- Dataset examples
- Decision Trees
- Decomposition
- Developing Estimators
- Ensemble methods
- Examples based on real world datasets
- Feature Selection
- Gaussian Mixture Models
- Gaussian Process for Machine Learning
- Generalized Linear Models
- Inspection
- Kernel Approximation
- Manifold learning
- Miscellaneous
- Missing Value Imputation
- Model Selection
- Multiclass methods
- Multioutput methods
- Nearest Neighbors
- Neural Networks
- Pipelines and composite estimators
- Preprocessing
- Semi Supervised Classification
- Support Vector Machines
- Tutorial exercises
- Working with text documents
- API Reference
sklearn
: Settings and information toolssklearn.base
: Base classes and utility functionssklearn.calibration
: Probability Calibrationsklearn.cluster
: Clusteringsklearn.compose
: Composite Estimatorssklearn.covariance
: Covariance Estimatorssklearn.cross_decomposition
: Cross decompositionsklearn.datasets
: Datasetssklearn.decomposition
: Matrix Decompositionsklearn.discriminant_analysis
: Discriminant Analysissklearn.dummy
: Dummy estimatorssklearn.ensemble
: Ensemble Methodssklearn.exceptions
: Exceptions and warningssklearn.experimental
: Experimentalsklearn.feature_extraction
: Feature Extractionsklearn.feature_selection
: Feature Selectionsklearn.gaussian_process
: Gaussian Processessklearn.impute
: Imputesklearn.inspection
: Inspectionsklearn.isotonic
: Isotonic regressionsklearn.kernel_approximation
: Kernel Approximationsklearn.kernel_ridge
: Kernel Ridge Regressionsklearn.linear_model
: Linear Modelssklearn.manifold
: Manifold Learningsklearn.metrics
: Metricssklearn.mixture
: Gaussian Mixture Modelssklearn.model_selection
: Model Selectionsklearn.multiclass
: Multiclass classificationsklearn.multioutput
: Multioutput regression and classificationsklearn.naive_bayes
: Naive Bayessklearn.neighbors
: Nearest Neighborssklearn.neural_network
: Neural network modelssklearn.pipeline
: Pipelinesklearn.preprocessing
: Preprocessing and Normalizationsklearn.random_projection
: Random projectionsklearn.semi_supervised
: Semi-Supervised Learningsklearn.svm
: Support Vector Machinessklearn.tree
: Decision Treessklearn.utils
: Utilities- Recently deprecated
- Developer’s Guide
- Contributing
- Crafting a minimal reproducer for scikit-learn
- Developing scikit-learn estimators
- Developers’ Tips and Tricks
- Utilities for Developers
- How to optimize for speed
- Cython Best Practices, Conventions and Knowledge
- Installing the development version of scikit-learn
- Bug triaging and issue curation
- Maintainer / core-developer information
- Developing with the Plotting API