Support Vector Regression (SVR) using linear and non-linear kernels

Toy example of 1D regression using linear, polynomial and RBF kernels.

import matplotlib.pyplot as plt
import numpy as np

from sklearn.svm import SVR

Generate sample data

X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()

# add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8))

Fit regression model

svr_rbf = SVR(kernel="rbf", C=100, gamma=0.1, epsilon=0.1)
svr_lin = SVR(kernel="linear", C=100, gamma="auto")
svr_poly = SVR(kernel="poly", C=100, gamma="auto", degree=3, epsilon=0.1, coef0=1)

Look at the results

lw = 2

svrs = [svr_rbf, svr_lin, svr_poly]
kernel_label = ["RBF", "Linear", "Polynomial"]
model_color = ["m", "c", "g"]

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True)
for ix, svr in enumerate(svrs):
    axes[ix].plot(
        X,
        svr.fit(X, y).predict(X),
        color=model_color[ix],
        lw=lw,
        label="{} model".format(kernel_label[ix]),
    )
    axes[ix].scatter(
        X[svr.support_],
        y[svr.support_],
        facecolor="none",
        edgecolor=model_color[ix],
        s=50,
        label="{} support vectors".format(kernel_label[ix]),
    )
    axes[ix].scatter(
        X[np.setdiff1d(np.arange(len(X)), svr.support_)],
        y[np.setdiff1d(np.arange(len(X)), svr.support_)],
        facecolor="none",
        edgecolor="k",
        s=50,
        label="other training data",
    )
    axes[ix].legend(
        loc="upper center",
        bbox_to_anchor=(0.5, 1.1),
        ncol=1,
        fancybox=True,
        shadow=True,
    )

fig.text(0.5, 0.04, "data", ha="center", va="center")
fig.text(0.06, 0.5, "target", ha="center", va="center", rotation="vertical")
fig.suptitle("Support Vector Regression", fontsize=14)
plt.show()
Support Vector Regression

Total running time of the script: (0 minutes 0.400 seconds)

Related examples

Comparison of kernel ridge regression and SVR

Comparison of kernel ridge regression and SVR

RBF SVM parameters

RBF SVM parameters

Plot classification probability

Plot classification probability

Comparison between grid search and successive halving

Comparison between grid search and successive halving

Early stopping in Gradient Boosting

Early stopping in Gradient Boosting

Gallery generated by Sphinx-Gallery