sklearn.base.BaseEstimator

class sklearn.base.BaseEstimator[source]

Base class for all estimators in scikit-learn.

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit keyword arguments (no *args or **kwargs).

Methods

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_params(**params)

Set the parameters of this estimator.

get_metadata_routing()[source]

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

Examples using sklearn.base.BaseEstimator

Inductive Clustering

Inductive Clustering

__sklearn_is_fitted__ as Developer API

__sklearn_is_fitted__ as Developer API

Metadata Routing

Metadata Routing

Approximate nearest neighbors in TSNE

Approximate nearest neighbors in TSNE