sklearn.isotonic
.IsotonicRegression¶
-
class
sklearn.isotonic.
IsotonicRegression
(*, y_min=None, y_max=None, increasing=True, out_of_bounds='nan')[source]¶ Isotonic regression model.
Read more in the User Guide.
New in version 0.13.
- Parameters
- y_minfloat, default=None
Lower bound on the lowest predicted value (the minimum value may still be higher). If not set, defaults to -inf.
- y_maxfloat, default=None
Upper bound on the highest predicted value (the maximum may still be lower). If not set, defaults to +inf.
- increasingbool or ‘auto’, default=True
Determines whether the predictions should be constrained to increase or decrease with
X
. ‘auto’ will decide based on the Spearman correlation estimate’s sign.- out_of_bounds{‘nan’, ‘clip’, ‘raise’}, default=’nan’
Handles how
X
values outside of the training domain are handled during prediction.‘nan’, predictions will be NaN.
‘clip’, predictions will be set to the value corresponding to the nearest train interval endpoint.
‘raise’, a
ValueError
is raised.
- Attributes
- X_min_float
Minimum value of input array
X_
for left bound.- X_max_float
Maximum value of input array
X_
for right bound.- X_thresholds_ndarray of shape (n_thresholds,)
Unique ascending
X
values used to interpolate the y = f(X) monotonic function.New in version 0.24.
- y_thresholds_ndarray of shape (n_thresholds,)
De-duplicated
y
values suitable to interpolate the y = f(X) monotonic function.New in version 0.24.
- f_function
The stepwise interpolating function that covers the input domain
X
.- increasing_bool
Inferred value for
increasing
.
Notes
Ties are broken using the secondary method from de Leeuw, 1977.
References
Isotonic Median Regression: A Linear Programming Approach Nilotpal Chakravarti Mathematics of Operations Research Vol. 14, No. 2 (May, 1989), pp. 303-308
Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods de Leeuw, Hornik, Mair Journal of Statistical Software 2009
Correctness of Kruskal’s algorithms for monotone regression with ties de Leeuw, Psychometrica, 1977
Examples
>>> from sklearn.datasets import make_regression >>> from sklearn.isotonic import IsotonicRegression >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41) >>> iso_reg = IsotonicRegression().fit(X, y) >>> iso_reg.predict([.1, .2]) array([1.8628..., 3.7256...])
Methods
fit
(X, y[, sample_weight])Fit the model using X, y as training data.
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
predict
(T)Predict new data by linear interpolation.
score
(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction.
set_params
(**params)Set the parameters of this estimator.
transform
(T)Transform new data by linear interpolation
-
fit
(X, y, sample_weight=None)[source]¶ Fit the model using X, y as training data.
- Parameters
- Xarray-like of shape (n_samples,) or (n_samples, 1)
Training data.
Changed in version 0.24: Also accepts 2d array with 1 feature.
- yarray-like of shape (n_samples,)
Training target.
- sample_weightarray-like of shape (n_samples,), default=None
Weights. If set to None, all weights will be set to 1 (equal weights).
- Returns
- selfobject
Returns an instance of self.
Notes
X is stored for future use, as
transform
needs X to interpolate new input data.
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
predict
(T)[source]¶ Predict new data by linear interpolation.
- Parameters
- Tarray-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
- Returns
- y_predndarray of shape (n_samples,)
Transformed data.
-
score
(X, y, sample_weight=None)[source]¶ Return the coefficient of determination \(R^2\) of the prediction.
The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred) ** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy
, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
- Xarray-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True values for
X
.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns
- scorefloat
\(R^2\) of
self.predict(X)
wrt.y
.
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.