sklearn.gaussian_process.kernels.Exponentiation¶
-
class
sklearn.gaussian_process.kernels.Exponentiation(kernel, exponent)[source]¶ The Exponentiation kernel takes one base kernel and a scalar parameter \(p\) and combines them via
\[k_{exp}(X, Y) = k(X, Y) ^p\]Note that the
__pow__magic method is overridden, soExponentiation(RBF(), 2)is equivalent to using the ** operator withRBF() ** 2.Read more in the User Guide.
New in version 0.18.
- Parameters
- kernelKernel
The base kernel
- exponentfloat
The exponent for the base kernel
- Attributes
boundsReturns the log-transformed bounds on the theta.
hyperparametersReturns a list of all hyperparameter.
n_dimsReturns the number of non-fixed hyperparameters of the kernel.
requires_vector_inputReturns whether the kernel is defined on discrete structures.
thetaReturns the (flattened, log-transformed) non-fixed hyperparameters.
Examples
>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import (RationalQuadratic, ... Exponentiation) >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = Exponentiation(RationalQuadratic(), exponent=2) >>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 0.419... >>> gpr.predict(X[:1,:], return_std=True) (array([635.5...]), array([0.559...]))
Methods
__call__(X[, Y, eval_gradient])Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta)Returns a clone of self with given hyperparameters theta.
diag(X)Returns the diagonal of the kernel k(X, X).
get_params([deep])Get parameters of this kernel.
Returns whether the kernel is stationary.
set_params(**params)Set the parameters of this kernel.
-
__call__(X, Y=None, eval_gradient=False)[source]¶ Return the kernel k(X, Y) and optionally its gradient.
- Parameters
- Xarray-like of shape (n_samples_X, n_features) or list of object
Left argument of the returned kernel k(X, Y)
- Yarray-like of shape (n_samples_Y, n_features) or list of object, default=None
Right argument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.
- eval_gradientbool, default=False
Determines whether the gradient with respect to the log of the kernel hyperparameter is computed.
- Returns
- Kndarray of shape (n_samples_X, n_samples_Y)
Kernel k(X, Y)
- K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional
The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when
eval_gradientis True.
-
property
bounds¶ Returns the log-transformed bounds on the theta.
- Returns
- boundsndarray of shape (n_dims, 2)
The log-transformed bounds on the kernel’s hyperparameters theta
-
clone_with_theta(theta)[source]¶ Returns a clone of self with given hyperparameters theta.
- Parameters
- thetandarray of shape (n_dims,)
The hyperparameters
-
diag(X)[source]¶ Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
- Parameters
- Xarray-like of shape (n_samples_X, n_features) or list of object
Argument to the kernel.
- Returns
- K_diagndarray of shape (n_samples_X,)
Diagonal of kernel k(X, X)
-
get_params(deep=True)[source]¶ Get parameters of this kernel.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
property
hyperparameters¶ Returns a list of all hyperparameter.
-
property
n_dims¶ Returns the number of non-fixed hyperparameters of the kernel.
-
property
requires_vector_input¶ Returns whether the kernel is defined on discrete structures.
-
set_params(**params)[source]¶ Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Returns
- self
-
property
theta¶ Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
- Returns
- thetandarray of shape (n_dims,)
The non-fixed, log-transformed hyperparameters of the kernel