sklearn.linear_model.Lars¶
- 
class 
sklearn.linear_model.Lars(*, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True, jitter=None, random_state=None)[source]¶ Least Angle Regression model a.k.a. LAR
Read more in the User Guide.
- Parameters
 - fit_interceptbool, default=True
 Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
- verbosebool or int, default=False
 Sets the verbosity amount
- normalizebool, default=True
 This parameter is ignored when
fit_interceptis set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScalerbefore callingfiton an estimator withnormalize=False.- precomputebool, ‘auto’ or array-like , default=’auto’
 Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'let us decide. The Gram matrix can also be passed as argument.- n_nonzero_coefsint, default=500
 Target number of non-zero coefficients. Use
np.inffor no limit.- epsfloat, optional
 The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the
tolparameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. By default,np.finfo(np.float).epsis used.- copy_Xbool, default=True
 If
True, X will be copied; else, it may be overwritten.- fit_pathbool, default=True
 If True the full path is stored in the
coef_path_attribute. If you compute the solution for a large problem or many targets, settingfit_pathtoFalsewill lead to a speedup, especially with a small alpha.- jitterfloat, default=None
 Upper bound on a uniform noise parameter to be added to the
yvalues, to satisfy the model’s assumption of one-at-a-time computations. Might help with stability.- random_stateint, RandomState instance or None (default)
 Determines random number generation for jittering. Pass an int for reproducible output across multiple function calls. See Glossary. Ignored if
jitteris None.
- Attributes
 - alphas_array-like of shape (n_alphas + 1,) | list of n_targets such arrays
 Maximum of covariances (in absolute value) at each iteration.
n_alphasis eithern_nonzero_coefsorn_features, whichever is smaller.- active_list, length = n_alphas | list of n_targets such lists
 Indices of active variables at the end of the path.
- coef_path_array-like of shape (n_features, n_alphas + 1) | list of n_targets such arrays
 The varying values of the coefficients along the path. It is not present if the
fit_pathparameter isFalse.- coef_array-like of shape (n_features,) or (n_targets, n_features)
 Parameter vector (w in the formulation formula).
- intercept_float or array-like of shape (n_targets,)
 Independent term in decision function.
- n_iter_array-like or int
 The number of iterations taken by lars_path to find the grid of alphas for each target.
Examples
>>> from sklearn import linear_model >>> reg = linear_model.Lars(n_nonzero_coefs=1) >>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) Lars(n_nonzero_coefs=1) >>> print(reg.coef_) [ 0. -1.11...]
Methods
fit(X, y[, Xy])Fit the model using X, y as training data.
get_params([deep])Get parameters for this estimator.
predict(X)Predict using the linear model.
score(X, y[, sample_weight])Return the coefficient of determination R^2 of the prediction.
set_params(**params)Set the parameters of this estimator.
- 
__init__(*, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True, jitter=None, random_state=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
- 
fit(X, y, Xy=None)[source]¶ Fit the model using X, y as training data.
- Parameters
 - Xarray-like of shape (n_samples, n_features)
 Training data.
- yarray-like of shape (n_samples,) or (n_samples, n_targets)
 Target values.
- Xyarray-like of shape (n_samples,) or (n_samples, n_targets), default=None
 Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
- Returns
 - selfobject
 returns an instance of self.
- 
get_params(deep=True)[source]¶ Get parameters for this estimator.
- Parameters
 - deepbool, default=True
 If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
 - paramsmapping of string to any
 Parameter names mapped to their values.
- 
predict(X)[source]¶ Predict using the linear model.
- Parameters
 - Xarray_like or sparse matrix, shape (n_samples, n_features)
 Samples.
- Returns
 - Carray, shape (n_samples,)
 Returns predicted values.
- 
score(X, y, sample_weight=None)[source]¶ Return the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
- Parameters
 - Xarray-like of shape (n_samples, n_features)
 Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
 True values for X.
- sample_weightarray-like of shape (n_samples,), default=None
 Sample weights.
- Returns
 - scorefloat
 R^2 of self.predict(X) wrt. y.
Notes
The R2 score used when calling
scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
- 
set_params(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
 - **paramsdict
 Estimator parameters.
- Returns
 - selfobject
 Estimator instance.