sklearn.tree.export_text

sklearn.tree.export_text(decision_tree, feature_names=None, max_depth=10, spacing=3, decimals=2, show_weights=False)[source]

Build a text report showing the rules of a decision tree.

Note that backwards compatibility may not be supported.

Parameters
decision_treeobject

The decision tree estimator to be exported. It can be an instance of DecisionTreeClassifier or DecisionTreeRegressor.

feature_nameslist, optional (default=None)

A list of length n_features containing the feature names. If None generic names will be used (“feature_0”, “feature_1”, …).

max_depthint, optional (default=10)

Only the first max_depth levels of the tree are exported. Truncated branches will be marked with “…”.

spacingint, optional (default=3)

Number of spaces between edges. The higher it is, the wider the result.

decimalsint, optional (default=2)

Number of decimal digits to display.

show_weightsbool, optional (default=False)

If true the classification weights will be exported on each leaf. The classification weights are the number of samples each class.

Returns
reportstring

Text summary of all the rules in the decision tree.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.tree import export_text
>>> iris = load_iris()
>>> X = iris['data']
>>> y = iris['target']
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
>>> decision_tree = decision_tree.fit(X, y)
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
>>> print(r)
|--- petal width (cm) <= 0.80
|   |--- class: 0
|--- petal width (cm) >  0.80
|   |--- petal width (cm) <= 1.75
|   |   |--- class: 1
|   |--- petal width (cm) >  1.75
|   |   |--- class: 2