class sklearn.preprocessing.Binarizer(threshold=0.0, copy=True)[source]

Binarize data (set feature values to 0 or 1) according to a threshold

Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1.

Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance.

It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting).

Read more in the User Guide.

thresholdfloat, optional (0.0 by default)

Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices.

copyboolean, optional, default True

set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix).

See also


Equivalent function without the estimator API.


If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline.


>>> from sklearn.preprocessing import Binarizer
>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> transformer = Binarizer().fit(X)  # fit does nothing.
>>> transformer
>>> transformer.transform(X)
array([[1., 0., 1.],
       [1., 0., 0.],
       [0., 1., 0.]])


fit(self, X[, y])

Do nothing and return the estimator unchanged

fit_transform(self, X[, y])

Fit to data, then transform it.

get_params(self[, deep])

Get parameters for this estimator.

set_params(self, \*\*params)

Set the parameters of this estimator.

transform(self, X[, copy])

Binarize each element of X

__init__(self, threshold=0.0, copy=True)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(self, X, y=None)[source]

Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

fit_transform(self, X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Xnumpy array of shape [n_samples, n_features]

Training set.

ynumpy array of shape [n_samples]

Target values.


Additional fit parameters.

X_newnumpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(self, deep=True)[source]

Get parameters for this estimator.

deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

paramsmapping of string to any

Parameter names mapped to their values.

set_params(self, **params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.


Estimator parameters.


Estimator instance.

transform(self, X, copy=None)[source]

Binarize each element of X

X{array-like, sparse matrix}, shape [n_samples, n_features]

The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.


Copy the input X or not.