sklearn.model_selection
.fit_grid_point¶
-
sklearn.model_selection.
fit_grid_point
(X, y, estimator, parameters, train, test, scorer, verbose, error_score=nan, **fit_params)[source]¶ Run fit on one set of parameters.
- Parameters
- Xarray-like, sparse matrix or list
Input data.
- yarray-like or None
Targets for input data.
- estimatorestimator object
A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a
score
function, orscoring
must be passed.- parametersdict
Parameters to be set on estimator for this grid point.
- trainndarray, dtype int or bool
Boolean mask or indices for training set.
- testndarray, dtype int or bool
Boolean mask or indices for test set.
- scorercallable or None
The scorer callable object / function must have its signature as
scorer(estimator, X, y)
.If
None
the estimator’s score method is used.- verboseint
Verbosity level.
- **fit_paramskwargs
Additional parameter passed to the fit function of the estimator.
- error_score‘raise’ or numeric
Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Default is
np.nan
.
- Returns
- scorefloat
Score of this parameter setting on given test split.
- parametersdict
The parameters that have been evaluated.
- n_samples_testint
Number of test samples in this split.