3.2.4.1.10. sklearn.linear_model
.RidgeClassifierCV¶
-
class
sklearn.linear_model.
RidgeClassifierCV
(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None, store_cv_values=False)[source]¶ Ridge classifier with built-in cross-validation.
See glossary entry for cross-validation estimator.
By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently.
Read more in the User Guide.
- Parameters
- alphasndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to
C^-1
in other linear models such as LogisticRegression or LinearSVC.- fit_interceptbool, default=True
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
- normalizebool, default=False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- scoringstring, callable, default=None
A string (see model evaluation documentation) or a scorer callable object / function with signature
scorer(estimator, X, y)
.- cvint, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy. Possible inputs for cv are:
None, to use the efficient Leave-One-Out cross-validation
integer, to specify the number of folds.
An iterable yielding (train, test) splits as arrays of indices.
Refer User Guide for the various cross-validation strategies that can be used here.
- class_weightdict or ‘balanced’, default=None
Weights associated with classes in the form
{class_label: weight}
. If not given, all classes are supposed to have weight one.The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
- store_cv_valuesbool, default=False
Flag indicating if the cross-validation values corresponding to each alpha should be stored in the
cv_values_
attribute (see below). This flag is only compatible withcv=None
(i.e. using Generalized Cross-Validation).
- Attributes
- cv_values_ndarray of shape (n_samples, n_targets, n_alphas), optional
Cross-validation values for each alpha (if
store_cv_values=True
andcv=None
). Afterfit()
has been called, this attribute will contain the mean squared errors (by default) or the values of the{loss,score}_func
function (if provided in the constructor). This attribute exists only whenstore_cv_values
is True.- coef_ndarray of shape (1, n_features) or (n_targets, n_features)
Coefficient of the features in the decision function.
coef_
is of shape (1, n_features) when the given problem is binary.- intercept_float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
fit_intercept = False
.- alpha_float
Estimated regularization parameter
- classes_ndarray of shape (n_classes,)
The classes labels.
See also
Ridge
Ridge regression
RidgeClassifier
Ridge classifier
RidgeCV
Ridge regression with built-in cross validation
Notes
For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import RidgeClassifierCV >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y) >>> clf.score(X, y) 0.9630...
Methods
decision_function
(self, X)Predict confidence scores for samples.
fit
(self, X, y[, sample_weight])Fit Ridge classifier with cv.
get_params
(self[, deep])Get parameters for this estimator.
predict
(self, X)Predict class labels for samples in X.
score
(self, X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_params
(self, \*\*params)Set the parameters of this estimator.
-
__init__
(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None, store_cv_values=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
decision_function
(self, X)[source]¶ Predict confidence scores for samples.
The confidence score for a sample is the signed distance of that sample to the hyperplane.
- Parameters
- Xarray_like or sparse matrix, shape (n_samples, n_features)
Samples.
- Returns
- array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted.
-
fit
(self, X, y, sample_weight=None)[source]¶ Fit Ridge classifier with cv.
- Parameters
- Xndarray of shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features. When using GCV, will be cast to float64 if necessary.
- yndarray of shape (n_samples,)
Target values. Will be cast to X’s dtype if necessary.
- sample_weightfloat or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample will have the same weight.
- Returns
- selfobject
-
get_params
(self, deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
predict
(self, X)[source]¶ Predict class labels for samples in X.
- Parameters
- Xarray_like or sparse matrix, shape (n_samples, n_features)
Samples.
- Returns
- Carray, shape [n_samples]
Predicted class label per sample.
-
score
(self, X, y, sample_weight=None)[source]¶ Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns
- scorefloat
Mean accuracy of self.predict(X) wrt. y.
-
set_params
(self, **params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfobject
Estimator instance.