sklearn.exceptions
.ConvergenceWarning¶
-
class
sklearn.exceptions.
ConvergenceWarning
[source]¶ Custom warning to capture convergence problems
- Attributes
- args
Examples
>>> import numpy as np >>> import warnings >>> from sklearn.cluster import KMeans >>> from sklearn.exceptions import ConvergenceWarning >>> warnings.simplefilter("always", ConvergenceWarning) >>> X = np.asarray([[0, 0], ... [0, 1], ... [1, 0], ... [1, 0]]) # last point is duplicated >>> with warnings.catch_warnings(record=True) as w: ... km = KMeans(n_clusters=4).fit(X) ... print(w[-1].message) Number of distinct clusters (3) found smaller than n_clusters (4). Possibly due to duplicate points in X.
Changed in version 0.18: Moved from sklearn.utils.
Methods
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
-
with_traceback
()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.